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Abstract-The mathematical model for a crack in an elastic adhesive layer sandwiched between
two adherends proposed by Fleck, Hutchinson and Suo ((1991) Crack path selection in a brittle
adhesive layer, International Journal of Solids and Structures 27(13), 1683-1703) was considered,
The elastic mismatch between the adhesive and adherend materials modifies the far-field values of
the stress intensity factors and of the T-stress in a manner that depends on the position of the crack
inside the layer and on the Dundurs parameters, A complex-potential stress-function formulation,
using dislocation distributions represented by truncated Chebyshev series, yielded an integral equa­
tion that was solved numerically by the method of collocations. The symbolic derivation of the
integral equations was checked, and a few differences from Fleck, Hutchinson and Suo's expressions
were identified and reconciled. The computational aspects of the solution were studied in detail
using two programming languages, MATHCAD and C+ +, run on standard PC hardware. A
palette of numerical techniques were utilized to study and control the consistency and accuracy of
the solution. Symmetry and anti-symmetry arguments were used to identify numerically sensitive
regions, Fast Fourier Transform calculation of sine and cosine Fourier integrals was used to increase
speed. Convergence of intermediate and final results was examined, It was found that the method
is very sensitive to the details of numerical computation, especially for combinations of parameters
that lead to nearly singular matrices, ~ 1998 Elsevier Science Ltd,

INTRODUCTION

Cracks in adhesive layers have been observed to propagate both interfacially as well as
cohesively in straight or wavy paths. Various crack propagation mechanisms have been
tentatively identified. In a recent paper, Fleck et al. (1991) presented a modeling technique
that gives numerical predictions of the stress intensity factors and T-stress at the tip of an
adhesive crack as functions of the far-field stress intensity factors and T-stress and of some
additive and multiplicative coefficients that depend on the elastic mismatch between the
adhesive and the adherend, and on the relative position of the crack within the adhesive,
The 2-material 3-region elasticity problem associated with this topic is solved by Fleck et
al. (1991) through an integral equations method using a Chebyshev series of the unknown
dislocation distribution, and several numerical techniques. We reconstructed the symbolic
development and then programmed the numerical method on a standard Pc. A study ofthe
computational aspects of the method was undertaken in order to accelerate the program's
performance and to keep under control the accuracy of the results. Several discrepancies
with the original formulation have been noted and reconciled.

Modeling of a crack in an adhesive layer
Consider the general expression of the asymptotic stress field at the tip of a crack

in an isotropic homogeneous material [Williams (1957) ; Westergaard (1939); Anderson
(1991)] :
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Fig. I. Crack types in adhesive layers: (a) interfacial crack; (b) cohesive crack.
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where rand 8 are the polar coordinates centered at the crack tip. K't and Kfj are the far
field stress intensity factors that multiply the terms that are singular in j;-. The terms which
are not singular in j;- are small near the crack tip and can be neglected. The constant term
T was kept in the expression though it does not have a singular behavior and it may be
assumed to be small in comparison with the singular stress. The reason for retaining T lies
in the fact that there is strong experimental evidence and some theoretical explanation
indicating that the value of T is essential in the crack-path selection mechanism. This term
is called "T-stress" .

Consider a typical structural adhesive layer contained between two substrates. The
adhesive and the substrate materials are assumed linear elastic, but of dissimilar elastic
properties. The adhesive layer is homogeneous, and its local behavior can be assumed to
be brittle. The propagation of a crack in the adhesive layer is either interfacial, or cohesive
(Fig. 1). For given geometry and crack position, two separate factors influence the stress
state around the crack tip: the far-field loading (stress intensity factors and T-stress), and
the elastic mismatch between adhesive and adherend materials.

The far-field stress intensity factors and T-stress result from external loading and
geometry of the assembly made up of the two adherends bonded together by the adhesive.
The length scale of the far-field problem is much larger than the thickness of the adhesive
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Fig. 2. Far-field and near-field effects in an adhesive joint: (a) far-field stress intensity factors, Ki
and Kfj, and the T-stress result from the far-field geometry and loading (adhesive layer is neglected) ;
(b) near-field effects are obtained by considering details of the adhesive layer, local geometry, and

crack position.

layer. At this length scale (Fig. 2(a», the influence of the adhesive layer can be neglected,
and the far-field stress intensity factors, K'[' and K'(j, and the T-stress result directly from
cIlassicallinear fracture mechanics analysis. For simple geometries, standard fracture mech­
anics formulae are available (see, for example, Anderson, 1991, p. 76). For more com­
plicated geometries, experimental analysis can be used.

The near-field model corresponds to length scales comparable with the thickness of
the adhesive layer, and with the magnitude of the crack opening displacement. At this scale,
the crack is modeled as a layer of finite thickness bounded by two half-planes of different
elastic properties (Fig. 2(b)).

Two elastic mismatch parameters and one geometric parameter are identified. The
elastic mismatch parameters (Dundurs, 1969) are:

(2)

where J1 and v are the shear modulus and Poisson's ratio, respectively. The parameter (X is
rdated to the plane-strain Young's moduli, £, and £2' by the relation (X = (£1 - £2)/(£1 +£2),
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Fig. 3. Typical values of the elastic mismatch parameters for polymeric and inorganic adhesives
joining various substrates. Poisson's ratio values, v, were taken from literature, and the results are

seen to be very sensitive to the actual v of the adhesive.

where £1 = 2,111/(1- VI), and £2 = 2,112/(1 - v2). They can also be related to the material
constants, K( and K2 as

K2 + I KI + I
~~-~~

,112 ,11 I
I)( = ---'----'---

K 2 + I K 1 +I'--+--
,112 ,11 1

13 =,112 ,111
K2 + I K] + I--+--

,112 ,11 I

(3)

where K has the expression K = 3-4v in plane-strain problems, and K =(3-v)/(1 +v) in
plane-stress problems. Other elastic mismatch parameters that can be derived from I)( and
13 are

I 1- f3
e = 2n In I + f3 '

1+1)(
and I: = -1~'

-I)(
(4)

Typical values of the elastic mismatch parameters for common structural adhesive appli­
cations are given in Fig. 3. It can be seen that I)( lies between 0.88 and 0.98, while 13 lies
between 0.175 and 0.255. The relationship between I)( and f3 follows a straight line with the
slope depending on the Poisson ratio value. For V = 1/3, the slope of this curve is 1/4, i.e.
I)( = 413. In our numerical tests, we took the epoxy/aluminum adhesive/adherend pair with
,111 = 26.3 GPa, VI = 0.35,,112 = 1.5 GPa, V2 = 0.34, and hence, I)( = 0.893 and 13 = 0.217.

The geometric parameter of the problem is the crack placement ratio c/H. For
c/H = 0.5, the problem is symmetrical and mode I far-field loading will induce mode I near­
field stresses only. As c/H approaches either 0 or I, the problem becomes more and more
asymmetric, and a mode I far field loading will induce both mode I and mode II local field
stresses. Another geometric parameter that appears in this problem is d/H. This parameter
is not independent, but it is related to c/H through the formula d/H = I-c/H.

The far-field stress intensity factors, K't and K'fj, and the far field T-stress, YV:;,

represent the loading for the near-field problem. Due to the interaction between the adhesive
layer and the dissimilar adherends, the near-field stress intensity factors, K, and KIl, and
the near field T-stress, T, are different from the far field values.
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Fig. 4. Analysis flow chart for the integral equation method applied to the linear fracture mechanics
analysis of an adhesive layer crack.

Problem outline
The problem consists of finding the relationship between the far-field stress intensity

factors and T-stress, and the local stress intensity factors and T-stress, for various com­
binations of elastic and geometric parameters of the adhesive/adherend pair. This relation­
ship can be established numerically by solving the elasticity problem represented in Fig.
2(b). The analytical method used to solve the problem is that of integral equations. The
crack is modeled with an unknown distribution of dislocations. Analytical expressions are
developed for the stress an displacement fields due to a single dislocation in a layered
material system. The combined effect of the entire distribution of dislocations is expressed
through a system of integral equations. The zero-traction condition on the crack face, and
the Kf, K'fj values in the far field, are imposed. To obtain numerical solutions, the
distribution of dislocations is represented in a truncated Chebyshev series of order N, and
the system of integral equations is evaluated at the same number, N, of collocation points.
Solution of the resulting linear algebraic system yields the unknown Chebyshev coefficients,
and reassembly of the series expansion recovers the distribution of dislocations. Using the
distribution of dislocations, the local stress and displacement fields, stress-intensity factors,
and T-stress can be calculated. A schematic of the solution process is presented in Fig. 4.

PRELIMINARY ELASTICITY RESULTS

The problem of a crack in an adhesive layer is best described using two-dimensional
plane-strain elasticity in stress function formulation. For convenience, both the Airy stress
function and Muskhelisvili's complex potentials are used. The bi-material interface con­
ditions playa crucial role and are discussed separately.

Airy stress function formulation for plane elasticity problems
The Airy stress function formulation is developed in terms of Airy function, U(x,y),

and the companion function, X(x, y). The functions U and X satisfy the differential equa­
tions

v4 U = 0 and V2 X = 0,

and are connected by the differential equation:

(5)
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The stresses are given by
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(6)

and the displacements are given by

(pu
O"xy = - axay' (7)

au ax au ax
21lu= --+(K+I)-, 21lv= --+(K+l)-.

ax ay ay ax

The displacement gradient with respect to x is given by

au 1 a2 u K+l a2x av 1 a2 u K+l a2x
ax = - 21l ax2 +~ ax ay' ax = - 21l ax ay +~ ax2 •

(8)

(9)

The material constant, K, has the expression K = 3- 4v in the plane-strain problems, and
K = (3-v)/(1 +v) in plane-stress problems.

Muskhelisvili's complex potentials formulation for plane elasticity problems
Using the complex variable z = x+ iy, Muskhelisvili's (1963) writes:

21l(u + iv) = Kcp(Z) - z(iJ(z) - fez)

(10)

(11)

(12)

where <1>(z) = cp'(z), 'F(z) = l/;'(z). Adding eqns (10) and (11), and taking the complex
conjugate of the results yields

It is convenient to introduce the auxiliary function

Q(z) = -<I>(z) - z<l>'(z) - 'I'(z),

and its conjugate

'F(z) = -O(z)-<1>(z)-z<1>'(z).

Using eqns (14a) and (14b) in eqn (13) yields the complex stress expression

O"yy-iO"xy = [<1>(z)-Q(z)+(z-z)<I>'(z)].

Similarly, one gets the displacements expression

(13)

(14a)

(14b)

(15)

21l(u+iv) = Kcp(Z)+W(z)-(z-z)<I>(z)+const, where w(z) = fO(z). (16)
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Fig. 5. The bi-material interface conditions.

In the boundary matching problems, the displacements are more conveniently expressed
in differential form, thus avoiding the integration constants associated with rigid-body
motions. Differentiating eqn (16) with respect to x, and dividing by 2ft yields the expression
of the displacement gradient:

(
au Ou)]( 1 --ox +i ox = 2J.1. $(z) + 2J.1. [(2-z)$'(z)-$(z)]. (17)

Muskhelisvili's complex potentials formulation can be related to the Airy stress function
formulation. Thus, the functions (,I>(z) and tjJ(z) can be used to calculate the Airy function
(Muskhelisvili, 1963):

U(X,Y) = ~e(z4J(z)+ JtjJ(z) dz]. (18)

The bi-material interface conditions
Consider a bi-material interface between material 1 and material 2. Traction equi­

librium and displacement compatibility must be satisfied.

Traction equilibrium conditions. The traction equilibrium conditions can be expressed
as:

where Px and Py are the tractions in the x and y directions, respectively.
For a general curvilinear interface, the tractions Px and Py are defined using the

components nx and ny of the external normal, n, and hence

(20)

In our case (Fig. 5), nx = 0, ny = -1, for material 1, and nx = 0, ny = 1, for material 2.
Hence eqn (20) becomes
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Fig. 6. An edge dislocation in a three-layer material system.

_ CT~~teriall + a~~teria12 = o.

Displacement compatibility conditions.

(u)materiall = (U)materiaI2,

(v)materiall = (V )materia12 .

(21)

(22)

To avoid the effects of rigid body rotations, displacement continuity can be conveniently
expressed in terms of the displacement gradient along the interface using eqn (17).

Displacement gradient jump in terms of Muskhelisvili's complex potentials. If one
attempts to use the same stress function or Muskhelisvili's complex potentials across a bi­
material interface, a certain displacement discontinuity will result. For example, one can
use eqn (17) to evaluate the displacement gradient above and below the bi-material interface
by using the same complex potential <I>(z), and changing only the material constants J1 and
K. Upon subtraction, one gets the displacement gradient jump

(
au . aV)diSlocation (au . aV)materiall (au . av)material2

A-+/A- = -+/- - -+1-
ax ox ax ax ax ax

Multiplying both sides of eqn (23) by 2J12/(K2 + 1) yields a non-dimensional expression of
the displacement gradient jump in terms of Dundurs' parameters, i.e.,

2J1 (au cv)diSlocation (rx+ f3) (rx - f3) -
_2_ A-+iA- = - - l1>(Z)- -- [(Z-Z)l1>'(Z)-l1>(Z)].
K2 + I ax ax I + rx I + rx

(24)

EDGE DISLOCATION IN A LAYERED MATERIAL SYSTEM

Consider the problem of an edge dislocation in a layered material system (Fig. 6). The
dislocation of strength bx + iby is placed inside the middle layer (material 2), at distance d
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from the upper interface, and distance c from the lower interface. The origin 0 of the x-y
system of axes is taken at the dislocation. We tackle this problem through the superposition
of two simpler problems:

• Problem I : Determine the stress and displacement fields due to an edge dislocation
placed at the origin of an infinite homogenous elastic plane.

• Problem 2: Determine the correction stress and displacement fields needed to com-
pensate for displacement discontinuities at the bi-material interfaces.

Problem 1 develops the complex potential for calculating the stress and displacement fields
due to a dislocation placed in a homogeneous plane, e.g. the middle layer. If we use the
same complex potential in the outer layers, displacement discontinuities will be registered
at the bi-material interfaces. To compensate for these displacement discontinuities, one
uses the corrections generated by Problem 2. Thus, the stress and displacement fields for
the complete problem result from the linear superposition of the stress and displacement
fields of Problem 1 and Problem 2.

Problem I : edge dislocation in a homogenous infinite plane
An edge dislocation in a homogenous infinite plane introduces a non-uniformity of

displacements defined by Burger's vectors bx and by- It can be shown (Suo, 1990; Ionita et
al., 1996) that Muskhelisvili's complex potentials for an edge dislocation of complex
Burger's vector bx + iby placed at the origin of the complex plane are:

<I>(z) = j1(by - ib<) ~ = ~_
n(K+I) z z'

(25)

(26)

where A = j1(by-ibx)/n(K+ I). Using eqns (25) and (26) in eqn (14b) yields the expression
for '¥(z)

j1(by + ibJ I A
'¥(z) =' - = --.

n(K+1) z z
(27)

Integrating eqns (25) and (27) yields q>(z) = A In z, and t/J(z) = Alnz. Using eqn (18) yields

(28)

Substituting eqn (28) into eqn (7) yields the stress expressions:

(29)

Displacements discontinuity induced by the dislocation field at the material interface
For a dislocation placed in the middle layer, the complex potentials expressions given

by eqns (25) and (26) are defined using the properties of material 2. As we attempt to use
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the same complex potentials outside the middle layer, i.e. in material I regions, a finite
displacement discontinuity will be registered at the bi-material interface. Using eqn (25)
into eqn (24) yields the displacement gradient jump at the bi-material interface, due to a
dislocation of strength bx + iby placed in the material 2 layer:

~ ( au . OV)diSlOCation _ (:I. + [3) A (rx - [3) ( . A A)Ll + III - - -- - - -- 21y- - -
K2 + I ox ox I +:1. Z I + rx 22 2'

(30)

where A = 1l2(by-ibJ/n(K2+ I). The real part of eqn (30) yields the u-component of the
displacement gradient jump, i.e. :

(31 )

where (Ll(ou/ox))tslocation and (Ll(ou/ox))i:slocation are influence coefficients due to Burger's
vectors bx and by respectively, i.e.,

(
OU)diSlOCatiOn 1 [ y y3]

Ll ox b
x

= n(I +:1.) (2rx-[3) r2 -2(:1.-[3)0 '

(
Ll :U)diSlocation = (II ) [-[3 .: +2(:1.-[3) xy2

].
x b, n +rx r- r4

(32)

(33)

Similarly, the imaginary part of eqn (30) yields the v-components of the displacement
gradient jump, i.e.,

where

(
ov)diSlOCatiOn _ (oV)diSlocation (oV)diSlOCatiOn

Ll o -bx 11
0

+bv Ll ox x by . X b,

(
OV)diSlocation I [x xl]

Ll- = [3- +2(rx- [3) - ,
ox by n(I +:1.) r2 r4

(
oV)di.slocation 1 [y y3]

Ll- = [3- +2(:1.-[3)- .
ox b, n(I +rx) r2 r4

(34)

(35)

(36)

Problem 2: correction stress fields
Problem 2 cancels the displacement gradient jump induced by Problem 1. To this

effect, consider the problem of a three-layer two-material system having stress-free infinite
boundaries and prescribed displacement gradient jumps at the bi-material interfaces, equal
in magnitude and of opposite signs to those given by eqns (31)-(36). Problem 2 will be
treated with the Airy stress function formulation as given by eqns (3)-(8). By matching the
free-boundary conditions in the far field and by satisfying the traction equilibrium and
displacement gradient jump at the interface, we are going to determine the Airy stress
function, U(x, y), and its companion function, X(x, y). The Fourier transform with respect
to the variable x is used. To keep the formulation manageable, the effects of bx and by are
considered separately, and the effect of the odd and even behavior in the variable x of the
displacement gradients, au/ox and ov/ox, and of the functions, U(x,y) and X(x,y), is used.
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Corree tion stress field for bx

Assume bx = I, and by = O. According to eqns (32) and (35), the displacement gradient
(oujoxh

x
is even in the variable x, while (ovj8xhx is odd. Examination of eqns (7) and (9)

yields that U(x,y) must be even in x, while X(x,y) must be odd. Hence, we use the
appropriate Fourier sine and cosine transforms, i.e.

- 2 i'CfJ.?r(U(x,y)) = U(A,y) = - U(x,y) cOsAxdx
1T. 0

- 2i
CfJ

.?,(X(x,y)) = X(}.,y) = - X(x,y) sin AX dx.
1T. 0

Applying the Fourier transform to eqn (5), yields

The roots of the characteristic equation are given by

and the general solution is

(37)

where the coefficients AI,"" A4 may be functions of A. Applying the inverse cosine trans­
form yields the physical-domain expression

roo [(AI A2
) (A 3 A4)' ]U(x, y) = Jo J:2 + T y e-,ly + J:2 + T y e'Y cos AX dk

Substituting eqn (37) into the Fourier transform of eqn (6) yields

_ I , .
X(A y) = -(A e- A

)' +A e'·)').
, 2)_2 2 4

Integrating with respect to y, and performing the inverse Fourier transform yields:

(38)

(39)

(40)

Substitution ofeqns (37) and (40) into the Fourier transform ofeqn (7) yields the expression
of stresses in the Fourier domain:

i.e.,
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(41)

(42)

Substitution ofeqns (37) and (40) into the Fourier transform ofeqn (9) yields the expression
of displacement gradients in the Fourier domain:

aiJ =ff (aV)=~Aau_ K+I AzX
ax S ax 2p. ay 2p.

= -2
1

{[ - A I + (1- Ay)A z]e- i.y+ [A, + (l +Ay)A4)] e,ly}p. .

- i(K2:1)cAze-,lY+A4ei.y).

Upon simplification

(43)

(44)

(45)

(46)

Expressions for the functions U and X in each layer. It can be seen that 4 coefficients,
A" Az, A3, and A4, determine fully the potentials Vex, y) and X(x, y) in a material region.
In our three-region model, a total of 12 coefficients need to be determined from the
boundary conditions applicable to each region. We designate these Ai coefficients as Ci in
layer 1, D i in layer 2, and E, in layer 3. The outer regions (layers 1 and 3, made of
material 1) are semi-infinite, and their far-field boundary is free of stresses and displacement
gradients.

Hence, the functions V and X must vanish at y -> ± 00 together with all their deriva­
tives. This implies that C3 = C4 = 0 in layer 1, and E1 = Ez = 0, in layer 3. Thus, the
following functions are used:
In layer 1 (d < y) :

U(A,y) = b< (~~ + ~.z y)e-,ly, X(Je,y) = bx ~zz e-,ly

V(x,y) = bx roc (S + ~z y)e-,lY coshdic, X(x,y) = b< reo Se-,ly sin hdk (47)J0 Ie z A . J0 2Jez
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In layer 2 ( - c < y < d):

1111

In layer 3 (y < -c):

f
OO (£3 £4)' fOO £4 'U(x,y)=bx 2+;:-ye'YcoshdJe, X(x,y)=bx -::;eAYsinhdJe.
o Je 0 2/.

(48)

(49)

Note that the 8 unknown constants, Cb C2, Db D 2, D 3, D4 , £3, £4 must be determined from
the biomaterial interface conditions.

Bi-material interface conditions in the Fourier domain. The traction equilibrium and
displacement compatibility conditions expressed by eqns (21) and (22) are transformed
into the Fourier domain. Thus, eqn (21) becomes

(tiXy)materiall = (G
Xy

)materiaI2,

(50)

where the tilde symbol designates the Fourier transform. The displacement gradient jump
due to the correction field must be equal and of opposite sign with the displacement gradient
jump due to the dislocation field. Hence

(
au) (aa)dlSlocation

11- = - 11­
ax ax

(
au) (au)diSlocation

11- = - 11­
ax ax

(51)

where the superscript dislocation refers to the expressions given in eqns (32) and (35) for
bx = 1, and bv = O. By applying eqns (50) and (51) in turn at y = d and y = -c interfaces,
we obtain the 8 equations necessary for the determination of the unknown constants C b

C2, D], D 2, D 3, D 4 , £3, £4.
Interface Conditions at y = d. At interface y = d, the upper layer corresponds to

material 1 and the lower layer to material 2. Substituting eqns (41) and (42) into eqn (50),
and using coefficients C b C2 above the interface and Db D2, D3, D4 , below the interface,
yields

Similarly, substituting eqns (45) and (46) into eqn (51) yields
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I( I(2 + I) M (aa)diSlocation
-- D 3 +MD4+-- e = -2 A- ,

)12 2 ax b,

1( I( +1) (au )diSlocalion
- )12 D 3 +D4 +MD4 +T eM = -2 A ax(A,d) b

x

•

Dividing eqn (52) by )1\ and adding to eqn (55) gives

(54)

(55)

1(2 + 1 Ad __~ (au )dis\ocation
+ 2 D4 e - 1 L A a (A, d) .

)12 1(2 + X b
x

Using the non-dimensional parameters a, f3 and L of eqns (3) and (4) yields

Similarly, dividing eqn (53) by )1\ and subtracting from eqn (54) yields

(56)

Using again the non-dimensional parameters a, f3 and L yields

(57)

The expressions for (A(aa/ax))t~s\ocation and (A(au/axm~slocationare computed by taking the
Fourier transform of eqns (32) and (35) and hence:
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(
ail )diSlocation _! (exo- Ad) +{3A~ -Ad

~" (A, d) - (I) eox b
x

n +ex

1113

(58)

(59)(
au )diS10CatiOn _! ({3(I- Ad) +exAd») -Ad

~ a (A, d) - (I) e 0x b
x

n +ex

Interface Conditions at y = -Co At interface y = -C, the upper layer corresponds to
material 2 and the lower layer to material 1. Substituting eqns (41) and (42) into eqn (50),
and using coefficients Db D2, D3, D4 above the interface and E3, E4 below the interface
yields:

Substituting eqns (45) and (46) evaluated on both sides of the interface into eqn (51),
yields:

(62)

(63)

Dividing eqn (61) by J1.z and adding to eqn (63) gives:

(
-I +AC I-Ac K] + I) . (au )diSlocation

+ +-~--~E4e~AC=-2~-a(A,-C) 0

J1.z J1.1 2J1.1 X b
x

Using the non-dimensional coefficients ex, {3 and L of eqns (3) and (4) yields:

(64)

Similarly, dividing eqn (61) by J1.z and subtracting from eqn (62) gives:
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[ (1 1) K + IJ (aa )diSlocation+ -Ac - - - + _1__ E4 e- Ae = -2 ~-(A, -c) .
J..l1 J..l2 2 ax b

x

Using the non-dimensional coefficients ex, f3 and L of eqns (3) and (4) yields:

(65)

The expressions of (~(aa/ax))i:'IOcationand (A(aLi/ax))i:'IOcation are computed by taking the
Fourier transform of eqns (32) and (35) and hence:

(
al1 _ )diSLocation __ ~ (ex(1- Icc) + f3A.C) -Ae

~ ~ (A, c) - (1) e
ox b, n +a

(
aLi _ )diSlocation _ ~ (f3(1 - Icc) +ai,C) -Ae

~a (A., C) - (1) e.x ~ n +ex

(66)

(67)

Symbolic solution of the algebraic system ofequations in the Fourier domain. Equations
(52), (53), (56), (57), (60), (61), (64), and (65) can be put together in matrix form as

eMI] [M2 ] rD

})[0] {E} = {vd
[M 3 ] [0] [M'l) {C}. C,l).

where

-1 AC _e~2;.c AC e- He

-1 (1 +AC) e~2i:c (1- AC) e- 2M

(MI ] = e- M L L -He0 - 0 --e
2 2

L L -He
0 - 0 '2 e

2

(68)

(69)

1

-1

a-f3

I-a

ex-f3
I-a

-).C

),c-1

a-f3 1
--Ac+ -
I-a 2

a-f3 1
- 1- ex (1 - AC) - '2

[
O~ A:_~2:~1

] ,, [M
4

] = e-A(H+d)

o -2:

(70)
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_e- 21d - Ade- 2Ad -1 -Ad

_e- 2i,d (1- Ad) e- 2Ad 1 (1 +Ad)

[M3J= e- AC a - f3 _2Ad (a- f3 . ~) , a-f3 1X-f3 ~
---e - --Ad+ - e- 2/,d --- --Ad--

I-IX I-IX 2 I-IX I-IX 2

1X-f3 -2'd (IX- f3(Ad_I)+ ~)e-Hd 1X-f3 a-f3 ~--e I, --- - -()"d+I)+-I-IX I-a 2 I-a I-IX 2

(71)

o
o

_ ~ (1X(1- AC) +Picc)
17: (1 + IX) ,

~ (f3(1- i.c) +aAC)
1t (1 + IX)

o
o

~ (a(1 - Ad) + f3At[\
1t (1+a) )

~ (f3(1- Ad) +aAt[\
1t (1 + IX) )

(72)

(73)

The system (68) must be solved for the coefficients DI , ••. ,D4 contained in the vector {D}.
The matrices of eqn (68) are of size 4 x 4,4 x 2, 4 x 4, and 4 x 2. This makes the system

coupled and not readily solvable for {D}. Symbolic manipulation of system (68) can yield
a symbolic solution (Graffeo, 1995). The matrices M I , M 2 , M 3 and M 4 were partitioned
into smaller 2-row units, i.e.,

[

[MIld [MII2]

[M12I ] [M 122 ]

[M3II J [M312J

[M32I l [Mml

[M2 d
[MnJ

[0]

[OJ

(74)

Formal Gauss elimination was applied using the non-singular pivots M41 and M 22. The
vectors {C} and {E} were eliminated, and hence

where
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(77)

(78)

[vTIl = [vn]- [Md[M41 l- 1[V21], [v!2l = [vd - [Mn][M21 l- 1[Vlll. (79)

Evaluation of the coefficients D" ... , D4 was done at A-values in the range (0, )'max), where
Amax is the upper limit of the truncated Fourier domain.

Correelion stress field for by
In this case bx = 0, and by = I, and the equations of the problem are the same as in

the Case b" except that U is odd with respect to x and X is even with respect to x. Hence,
we apply the Fourier sine transform to U and the Fourier cosine transform to X. Denoting

2 foo 2 foo.~Au) = 0 = - UsinAxdx, ffcCx) = X = - XcosAxdx,
non 0

(80)

and following the same steps as in Case bx , we obtain the following integral representations

(81)

(82)

The minus sign in the X representation appears when using eqn (6). The coefficients Bi are
denoted: Fi in layer 1, Gi in layer 2 and Hi in layer 3. From the far-field conditions it follows
that F3 = F4 = HI = H 2 = O. The interface conditions are introduced in the same manner
as in the Case bx , and finally we get

(
[MIl [M2l 0 )(1~)= ({Wd),
[M3l 0 [M4 l {F} {W2}

where the matrices [M[l-[M4l are given by eqns (69)-(71) and {w,} have the expressions

o
o

~ (- P(1 + AC) + rtAC)
n (1+()() ,

~ (-()((1 +AC) +PAC)
n (1 +rt)

o
o

~ (-P(l+2d)+rtA~
n (1+()() )

~ (()((1 +Ad) - PA~
n (1+()() )

(83)

After formal elimination of {H} and {F}, we get
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where the matrices of the right hand side are given in eqns (77)-(79).

Superposition ofproblem 1 and problem 2
The full stress field in any point of the plane is obtained superposing the effects.

Generally we may write

= (jdislocation + (jcorrection (86)

where (jdislocation represents the state of stress given in Problem 1 by eqn (29). The correction
stresses (jcorrection, are calculated in Problem 2 with eqns (75) and (76). For b, = 1, use the
coefficients Db ... ,D4 given by eqns (75) and (76) to get:

For by = 1, use the coefficients Gb ... ,G4 given by eqns (84) and (85) to get

«(jxx)b~rrection = LX) {[G] + (Ay-2)G z]e- AY + [G3+ (Ay+2)G4]eAY } sinhdA,

«(jyy)b~rrection = -LX> [(G 1 +GzAy)e- AY +(G3+G4).y)eAy]sinhdA,

«(jXy)b~rrectlOn = IX> {[Gl+(Ay-l)Gz]e-AY+[G3+(Ay+l)G4]eAY}coshdA. (88)

Hence, at y = 0, at the crack line, the stress field induced by the dislocation is given by

(89)

(90)

(91)
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The correction functions g;(x) andJ:ix), i,j = 1, 2, used in eqns (89)-(91), are derived from
eqns (87) and (88) by taking y = 0 and dividing by fl2/4n(l- V2), i.e.,

(92)

or

(93)

The Fourier transforms contained in eqns (92) and (93) were performed numerically using
an adaptation of the Fast Fourier Transform (FFT) method.

THE INTEGRAL EQUAnON AND ITS SOLUTION

Setup of the integral equation
Consider Fig. 2, with the crack in the adhesive layer extending along the negative x­

axis from 0- to - 00. The crack is modeled by an unknown distribution of dislocations to
be determined from the boundary conditions and the load-like far-field quantities, K'f',
K'fj, and T"'. The following matrix notations are used:

b(x) = {bAX)}, f(x) = [fn(X) fxv(X)], p(x) = {PAX,O)},
~W &W &W h~~

{
U(X)} {Ku}u(x) = ,K =
vex) K1

(94)

where the functionsfxx(x),/XY(x), and[y,y(x) are given eqn (93). The traction-free condition
on the crack faces (y = 0) is written as

(95)

By definition, the relation between crack face displacements and the distribution of dis­
locations is

u(x) + -u(x)- = fb(~) d~ =>

Recall Williams' (1952) relation:

(96)
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Differentiating eqn (97) and substituting in eqn (96) yields

K o + 1 K
b(x) '" -2- ~.

f),2 v -2nx

1119

(97)

(98)

Applying eqn (98) in the adhesive (material 2) i.e. very close to the crack tip, we write:

b(O",K+l K when~-+O-,
2f), J -2n~

whereas in the adherent (material 1) we get:

(99)

(100)

The integral eqn (95) and the additional condition (100) must be solved to determine the
unknown distribution of dislocations, b(x). Equation (99) can be then used to determine
the near-field stress intensity factors in the adhesive.

The infinite interval ( - 00,0) can be conveniently changed to the finite interval ( - 1, 1)
through the change of variables

u-l t-l
x = u+ l' ~ = t + l' U, t e( - 1, 1)

and denoting c(t) = b(~(t», eqn (95) becomes:

fl U+ 1 fl dt
( )( l)

c(t)dt+ F(x(u)-~(t»c(t)--= 0,
-1 u-t t+ -I (t+ 1)2

while eqns (99) and (100) take the form

(101)

(102)

2 f@+t(K2+l)c(t) -+-- -- -- K
~ l-t 2f),2

2 f@+t(K 1 +l)c(t) -+ -- -- -- K oo

~ I-t 2f),[

for t -+ 1-,

for t -+ -1 +.

(103a)

(103b)

Chebyshev series expansion
The solution is sought in terms of a truncated Chebyshev series:

(104)

where N is the number of terms, Tk(t) are Chebyshev polynomials of the first kind and
order k, i.e.,
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{
a1k } {at}Tk(t) = cos(karccos(t)) and ak = '= .
a2,k a2 k

(105)

The 2(N+ 1) coefficients, ab in the Chebyshev series expansion have to be determined
numerically. Taking the limit t --+ 1- and t --+ -1 + in eqns (102) and (103), respectively,
yields the direct relation between the near-field and far-field stress intensity factors and
Chebyshev coefficients:

(106)

(107)

Substitution ofeqn (104) into eqn (101) yields the discretized form of the integral equation:

where

w w

-n(l+u) L Uk_l(u)ak+ L Dk(u)ak = 0,
k=l k=O

(108)

sin(k arccos u)
Uk(u) = ~

V 1-u2
d D ( )

= II f(x(u) - ~(t)) Tk(t) d
an k u 1 !1-:2 t.

-I + t V 1-t2
(109)

Collocation of the discretized integral equation
The discretized integral eqn (108) is transformed into a system of N x N equations by

evaluation at N Gauss-Legendre collocation points:

N N

-n(l+u j ) L Uk_1(Uj)ak+ L Dk(u;)ak =0 i=O, ... ,N uj E(-l,l). (110)
k~ 1 k~O

Adding eqn (107) yields, in matrix notations,

Do,o -n(1 +uo)Uol+Do,1 -n(l +UO)UN-1I+DO,N ao 0

D1,0 -n(1 +ul)Uol+D1,l -n(1 +U1)UN_1I+D1,N al 0

Dn,o -n(l +uN)Uol+Dn,l -n(1 +UN)UN_1I+DN,N aN-l 0

I -I ( _l)NI aN v

(111)

where 1 is the 2 x 2 identity matrix, v is the "data", i.e.,

(112)

and Di,k are the matrix coefficients,
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_fl f(x(u i ) - ¢(t)) Tk(t)
Dik - I ~dt.

• -1 +t V I-t2

1121

(113)

Evaluation of the singular integrals defining the matrix coefficients Di,k

Evaluation of the matrix coefficients Di,k involves certain singular integrals that need
to be treated with special attention. Writing eqn (109) for k+ I

D (U)=f
1

f(x(u)-¢(t)) Tk-t-l(t)dt
k-t-l 1+ t 2'

-I 1- t

and using the recurrence relation between Chebyshev polynomials

yields

(114)

(115)

where

fl Tk(t) fl f(x(u) - ¢(t)) I
Ek(u) = f(x(u)-¢(t)) ~dt, k ~ 0 and Do(u) = I --dt.

- 1 V 1- t 2 _ 1 + t I - t 2

(117)

Thus, the evaluation of eqn (109) has been reduced to the evaluation of only two integrals,
Ek(u) and Do(u). The integral Ek(u) can be computed directly using Gauss-Chebyshev
quadrature

(118)

The integral Do(u) requires further attention, since it has a singular point at t ~ -I due to
the presence of t+ I in the denominator. Making the change in variable t = (1- ~)/(1 +~),

we obtain

_! foo f(x(u) + ~) d
Do(u) - 2 r:.~.

o v~

(119)

The integral (119) has an integratable singularity at ~ = O. Two methods were used in
parallel to compute the integral (119) : the Singularity Removal Method and the Finite­
Part Regularization Technique. These methods are described next.
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Singularity removal method
Using the change of variable '1 -> p2

, expression (119) becomes

~
where Po = '1/ ~~.

Finite-part regularization technique
Integral (119) can be written as

D() =l' fiIWf(X(U)+'1)d
o u 1m 2 ~ '1.C---l>O

o n'1

Denoting

f(x) = r 0 fxy(X)] and rex) = rfxxCx) 0 ]
lhAx) 0 L 0 fvy(x)

the symmetric and antisymmetric part of F(x) integral, one can write eqn (121) as

J;] (1 ) I-uDo(u) = TPf C *(f(x)-f'(x)), x = -1-
ynx x>o +u

(120)

(121)

(122)

(123)

where the symbol * signifies the convolution integral, e.g.,f*g = Jf(~)g(x-~) d~, while

1 (1)-Pf-
fi .fi x>o

(124)

is the Finite Part distribution of I/~ (Zemanian, 1965; Ionita, 1993). We use a reg­
ularization of expression (124) through the following Dirac delta distribution sequence
(Kecs and Teodorescu, 1974) :

b (x) = ~ _e_n - where lim en = 0, and lim bE (x) = b(x) (125)
En 1t X2 +e; 'n_,'X! F.n-loO 11

where b(x) is Dirac delta distribution. Hence,

(126)

The limit en -> 0 of eqn (126) yields expression (124), i.e.,

lim lpn(x) = Pf(__I_) .
,.-0 ~ x>o

Using (126) in relation (123) gives the following evaluation of the Do(u) integral:
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Do(u) = f 1!~ lp,Jx) *(f(x) -{"(x»,
1-u

X=--.
l+u

1123

(127)

After the matrix coefficients Di,k are evaluated, the linear algebraic system (111) is solved
through standard numerical routines, and the solution represents the Chebyshev
coefficients, contained in the vector matrix ah k = 0, ... , N. Substitution of these coefficients
into the series expansion (104) yields the dislocations distribution, and thus the problem is
solved.

EVALUATION OF THE NEAR-FIELD STRESS INTENSITY FACTORS, K[ AND Ku

The Chebyshev coefficients, contained in the vector matrix ab k = 0, ... , N can be used
to calculate the near-field stress intensity factors, K1 and Kll in the adhesive layer. Recall
eqn (106),

(128)

Hence, the near-field stress intensity factors are calculated as

(129)

EVALUATION OF THE COEFFICIENTS c[ AND CU OF THE T-STRESS

The stress (J xx at any point on the x-axis is calculated with the integral:

(130)

where the row matrix g(x) = [gx(x) gy(x)] contains the expressions given by eqn (92).
Substituting the Chebyshev series expansion (104) into eqn (130) yields

where

II g(x(u) - ~(t» Tk(t) d
Hk(u) = 1 t.

-1 + t Jl- t2

(131)

(132)

The T-stress in the adhesive layer is estimated by evaluating (Jxx on the crack faces very
close behind crack tip, i.e.,

T = lim (JxxCx) = lim (In(x(u)).
x-o~ u-l-

Substituting eqn (131) into eqn (133) yields

(133)



1124 V. Giurgiutiu et al.

(134)

The evaluation ofHk (1) was done without numerical difficulties using the Gauss-Chebyshev
quadrature:

(
2J-l )tj=cos ~n . (135)

Linear dependence is assumed between the local T-stress and the far field stress intensity
factors, K? and Kfj, i.e, T = c/K? +c//Kfj. Hence, c[ and c// are calculated by solving the
problem for K[ = 1, K// = 0, and for K[ = 0, K// = 1, respectively.

CONVERGENCE STUDIES AND NUMERICAL RESULTS

Numerical cases were studied to assess the convergence properties of the method and
to obtain numerical values for the c/ and c// coefficients of the local T-stress. In one
study, realistic values of the material parameters were used, and the Aluminum/Epoxy
adherend/adhesive pair was chosen with /11 = 26.3, VI = 0.35, /12 = 1.5, V2 = 0.34,
a = 0.8936, f3 = 0.2431. Two other cases were run with round values of the Dundurs
parameters (0: = 0.8, f3 = 0.3, and 0: = 0.9, f3 = 0.2) in order to facilitate direct comparison
with the results published by Fleck et al. (1991). In all cases, the crack-positioning parameter
was taken as c/H = 0.6. Several convergence studies were performed. In these studies we
solved the problem for an increasing numerical size (N = 10,20,30, and 40), and examined
the behavior of the Chebyshev coefficients, of the stress intensity factors error parameter,
and of the c[ and c// coefficients.

Convergence of the Chebyshev coefficients
Figure 7 shows the variation of the al.k. a2,k Chebyshev series coefficients with k for

N = 20, under two loading conditions, mode I loading (K/ = 1, K// = 0), and mode II
loading (K/ = 0, K// = 1). Recall that, in a homogeneous material, mode I loading induces
only au coefficients, while mode II loading induces only a1,k' In our case of mixed materials,
mode I loading will induce both a2.k and al.k coefficients, but the former will be dominant,
while the latter will be much smaller and will serve as corrections. For mode II, the same
situation occurs, but with the subscripts reversed, i.e., al,k are dominant and a2,k are
corrections. The correction Chebyshev series coefficients can be also viewed as coupling
terms generating mode II stress intensity factors under mode I loading and vice-versa. The
coupling Chebyshev series coefficients were found to be two orders of magnitudes lower
than the dominant Chebyshev series coefficients.

Note that Fig. 7 presents separately the dominant Chebyshev series coefficients and
the correction Chebyshev series coefficients. Though the absolute value of the correction
Chebyshev series coefficients is small compared to the dominant Chebyshev series
coefficients, their contribution is paramount in revealing the differences between the classical
homogeneous case and the bi-material case studied here. Examination of Fig. 7 indicates
that, for this value of N, the dominant coefficient converge rapidly towards zero (Fig, 7(a»,
while the correction coefficients converge much slower (Fig. 7(b», A better convergence
was notices for N = 40. However, for N = 30, a case of bad convergence (or even non­
convergence) was sighted. Figure 8 presents the Chebyshev series coefficients for mode I
and N = 30. In Fig. 8(a) we see that the dominant Chebyshev series coefficients converge
very slowly and present a "beats" phenomenon. In Fig. 8(b) we observe that the correction
Chebyshev series coefficients do not seem to converge at all and maintain large amplitudes
even at k = N.

Similar patterns of behavior were obtained for the other combinations of a and f3
parameters. These numerical experiments indicated that the case N = 30 had numerical
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Fig. 7. Chebyshev series coefficients, a',h a2,h for N = 20 and C( = 0.8, f3 = 0.3: (a) strong con­
vergence of the dominant Chebyshev series coefficients; (b) weaker convergence of the correction

Chebyshev series coefficients.

problems and did not converge properly, while the cases N = 20 and N = 40 did not have
numerical problems and convergence satisfactorily.

Convergence of the reconstructed dislocations distribution
The Chebyshev series coefficients can be used to reconstruct the dislocation distribution

using eqn (47). Note that this equation contains a singular part (1 + t)I!2(1_ t)'!2, multiplying
the Chebyshev series. In our studies, we concentrated our attention on the Chebyshev series
and used the expression

{
c*(t)} N {a}1 = L Tk(t) I,k.

cf(t) k= 0 a2.k
(136)

Figure 9 presents plots of eqn (136) for N = 10,20,30 and 40 where Fig. 9(a) presents the
dominant part of the dislocations distribution, i.e. cf(t) for mode I loading and CI. == 0.8,
f3 = 0.3. Note that the reconstructed curves for N = 10, 20 and 30 are almost indis­
tinguishable, while the curve for N = 30 is widely off and with slope discontinuities in some
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Fig. 8. Poor convergence of the Chebyshev series coefficients, a'.b a2.b for N = 30 and mode I
loading (a = 0.8, f3 = 0.3): (a) beats phenomenon in the dominant Chebyshev series coefficients;

(b) no-convergence of the correction Chebyshev series coefficients.

places. Similar behavior is observed in the correction part of the dislocations distribution
for mode I loading, cf(t), as shown in Fig. 9(b). These observations were also noted for the
other a-fJ pairs. Hence, it was decided not to discuss the case N = 30 any longer.

Convergence of the stress intensity factors
An important result of our calculations is the finding of the local stress intensity factors

KJ and KJI at the tip of the adhesive-layer crack. The local stress intensity factors are
calculated from the Chebyshev series coefficients via eqn (129). The computed local stress
intensity factors can be used to check the consistency of the solution. Using the principle
of the conservation of the J-integral, the following error formula can be derived:

error = 1- _ KJ+KJJ

I-a
1+0'. [(Kf')

2 + (Kf1)2]

x 100%. (137)

The error estimated with formula (137) is plotted in Fig. 10 for N = 10, 20, and 40. Note
that, for N?3 20, the error becomes small (about 10% for K1, and about 12% for Kil
loading). Comparison of the results obtained with the Singularity Removal Method and
the Finite-Part Regularization Technique indicates that both methods give, on average,
about the same error.
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correction part of the dislocations distribution.

Convergence of the c\ and cll coefficients for the calculation of T-stress
A convergence study for the c/ and Cll coefficients and comparison with the results of

Fleck et at. (1991) is given in Fig. 11 for CI. = 0.9, f3 = 0.2, and c/H = 0.6. Good convergence
behavior was observed. The discrepancy between our results and those of Fleck et al. (1991)
is relatively small, and may be attributed to the computational details of the numerical
methods used.

CONCLUSIONS

The theoretical developments and the solution algorithm used by Fleck et at. (1991)
for finding the local stress intensity factors, Kl and K/I, and T-stress coefficients, c/ and Clf,

at the tip of an adhesive layer crack has been studied. The symbolic derivation of the
integral equations was reconstructed. To increase the accessibility of new readers to this
work, details of the derivations were introduced in several places, as well as some notation
modifications.
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Fig. 10. Percentage error in the evaluation of the local stress intensity factors for rx = 0.8936,
f3 = 0.2431 and N = 10,20, and 40.

The numerical part of the solution algorithm was studied extensively. Certain accel­
eration techniques were used to speed up the computation and increase accuracy, as
described in the text. The symbolic solution of the algebraic system in the Fourier domain
was used. Particular attention had to be given to the evaluation of the singular integrals
determining the coefficients of the linear algebraic system, and special recurrence techniques
were used together with the Singularity Removal Method using a change of variables, and
the Finite-Part Regularization Technique. Thus, the numerical convergence difficulties at
u = -1 reported by Giurgiutiu et al. (1995) have been successfully overcome. Implemen­
tation on a Pentium PC with relatively short computation time was achieved. The con­
vergence of the results with the problem size, N, was examined and was found to be
adequate for N = 40.

Though the outline of the problem is straightforward, its solution presented some
difficulties. Difficulties noted with this method of solution include: convergence of the
Chebyshev coefficients and evaluation of certain singular equations. Hence, the use of this
solution method requires familiarity with the computational aspects specific to this class of
problems.
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