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Abstract—The mathematical model for a crack in an elastic adhesive layer sandwiched between
two adherends proposed by Fleck, Hutchinson and Suo ((1991) Crack path selection in a brittle
adhesive layer. International Journal of Solids and Structures 27(13), 1683-1703) was considered.
The elastic mismatch between the adhesive and adherend materials modifies the far-field values of
the stress intensity factors and of the T-stress in a manner that depends on the position of the crack
inside the layer and on the Dundurs parameters. A complex-potential stress-function formulation,
using dislocation distributions represented by truncated Chebyshev series, yielded an integral equa-
tion that was solved numerically by the method of collocations. The symbolic derivation of the
integral equations was checked, and a few differences from Fleck, Hutchinson and Suo’s expressions
were identified and reconciled. The computational aspects of the solution were studied in detail
using two programming languages, MATHCAD and C+ +, run on standard PC hardware. A
palette of numerical techniques were utilized to study and control the consistency and accuracy of
the solution. Symmetry and anti-symmetry arguments were used to identify numerically sensitive
regions. Fast Fourier Transform calculation of sine and cosine Fourier integrals was used to increase
speed. Convergence of intermediate and final results was examined. It was found that the method
is very sensitive to the details of numerical computation, especially for combinations of parameters
that lead to nearly singular matrices. € 1998 Elsevier Science Ltd.

INTRODUCTION

Cracks in adhesive layers have been observed to propagate both interfacially as well as
cohesively in straight or wavy paths. Various crack propagation mechanisms have been
tentatively identified. In a recent paper, Fleck et al. (1991) presented a modeling technique
that gives numerical predictions of the stress intensity factors and T-stress at the tip of an
adhesive crack as functions of the far-field stress intensity factors and T-stress and of some
additive and multiplicative coefficients that depend on the elastic mismatch between the
adhesive and the adherend, and on the relative position of the crack within the adhesive.
The 2-material 3-region elasticity problem associated with this topic is solved by Fleck et
al. (1991) through an integral equations method using a Chebyshev series of the unknown
dislocation distribution, and several numerical techniques. We reconstructed the symbolic
development and then programmed the numerical method on a standard PC. A study of the
computational aspects of the method was undertaken in order to accelerate the program’s
performance and to keep under control the accuracy of the results. Several discrepancies
with the original formulation have been noted and reconciled.

Modeling of a crack in an adhesive layer

Consider the general expression of the asymptotic stress field at the tip of a crack
in an isotropic homogeneous material [Williams (1957) ; Westergaard (1939) ; Anderson
(1991)]
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Fig. 1. Crack types in adhesive layers: (a) interfacial crack ; (b) cohesive crack.
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where r and 8 are the polar coordinates centered at the crack tip. K7 and K7 are the far
field stress intensity factors that multiply the terms that are singular in \/; The terms which
are not singular in \ﬂ are small near the crack tip and can be neglected. The constant term
T was kept in the expression though it does not have a singular behavior and it may be
assumed to be small in comparison with the singular stress. The reason for retaining 7 lies
in the fact that there is strong experimental evidence and some theoretical explanation
indicating that the value of T is essential in the crack-path selection mechanism. This term
is called ““T-stress”.

Consider a typical structural adhesive layer contained between two substrates. The
adhesive and the substrate materials are assumed linear elastic, but of dissimilar elastic
properties. The adhesive layer is homogeneous, and its local behavior can be assumed to
be brittle. The propagation of a crack in the adhesive layer is either interfacial, or cohesive
(Fig. 1). For given geometry and crack position, two separate factors influence the stress
state around the crack tip: the far-field loading (stress intensity factors and T-stress), and
the elastic mismatch between adhesive and adherend materials.

The far-field stress intensity factors and T-stress result from external loading and
geometry of the assembly made up of the two adherends bonded together by the adhesive.
The length scale of the far-field problem is much larger than the thickness of the adhesive
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Fig. 2. Far-field and near-field effects in an adhesive joint: (a) far-field stress intensity factors, K

and K77, and the T-stress result from the far-field geometry and loading (adhesive layer is neglected) ;

(b) near-field effects are obtained by considering details of the adhesive layer, local geometry, and
crack position.

layer. At this length scale (Fig. 2(a)), the influence of the adhesive layer can be neglected,
and the far-field stress intensity factors, K;° and K§;, and the T-stress result directly from
classical linear fracture mechanics analysis. For simple geometries, standard fracture mech-
anics formulae are available (see, for example, Anderson, 1991, p. 76). For more com-
plicated geometries, experimental analysis can be used.

The near-field model corresponds to length scales comparable with the thickness of
the adhesive layer, and with the magnitude of the crack opening displacement. At this scale,
the crack is modeled as a layer of finite thickness bounded by two half-planes of different
elastic properties (Fig. 2(b)).

Two elastic mismatch parameters and one geometric parameter are identified. The
elastic mismatch parameters (Dundurs, 1969) are :

y (1 =va) o — (1 =V )/ _ 1A =2v)/pp — (1 =2v)) /1y @)
(I =v)/ua+ (A =v)/p,’ 2 (I—=v)pa+ (A —=vi)/p

where p and v are the shear modulus and Poisson’s ratio, respectively. The parameter « is
related to the plane-strain Young’s moduli, £, and £,, by the relation o = (£, — E,)/(E, + E,),
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Fig. 3. Typical values of the elastic mismatch parameters for polymeric and inorganic adhesives
joining various substrates. Poisson’s ratio values, v, were taken from literature, and the results are
seen to be very sensitive to the actual v of the adhesive.

where £} = 2u,/(1—v,), and E, = 2u,/(1 —v,). They can also be related to the material
constants, x, and k, as

Ko+1 x, +1 Kk;—1 Kk, —1
%) H Uz Uy
a:——‘—-—~, = ——
K, +1 Kk, +1 B [ B | 3)
H2 Hi H2 Hy

where x has the expression x = 3—4v in plane-strain problems, and x =(3—v)/(1+v) in
plane-stress problems. Other elastic mismatch parameters that can be derived from « and
B are

—B

0 _l+ac
1+p5°

and L=—— 4

1 =1

Y
T 2z

Typical values of the elastic mismatch parameters for common structural adhesive appli-
cations are given in Fig. 3. It can be seen that « lies between 0.88 and 0.98, while § lies
between 0.175 and 0.255. The relationship between « and § follows a straight line with the
slope depending on the Poisson ratio value. For v = 1/3, the slope of this curve is 1/4, i.c.
o = 4f. In our numerical tests, we took the epoxy/aluminum adhesive/adherend pair with
U = 26.3 GPa, v, = 0.35, y, = 1.5 GPa, v, = 0.34, and hence, « = 0.893 and § = 0.217.

The geometric parameter of the problem is the crack placement ratio ¢/H. For
¢/H = 0.5, the problem is symmetrical and mode I far-field loading will induce mode I near-
field stresses only. As ¢/H approaches either 0 or 1, the problem becomes more and more
asymmetric, and a mode I far field loading will induce both mode I and mode II local field
stresses. Another geometric parameter that appears in this problem is d/H. This parameter
is not independent, but it is related to ¢/H through the formula d/H = 1 —c¢/H.

The far-field stress intensity factors, K;° and Kj;, and the far field T-stress, 7%,
represent the loading for the near-field problem. Due to the interaction between the adhesive
layer and the dissimilar adherends, the near-field stress intensity factors, K; and X;, and
the near field T-stress, 7, are different from the far field values.
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Fig. 4. Analysis flow chart for the integral equation method applied to the linear fracture mechanics
analysis of an adhesive layer crack.

Problem outline

The problem consists of finding the relationship between the far-field stress intensity
factors and T-stress, and the local stress intensity factors and T-stress, for various com-
binations of elastic and geometric parameters of the adhesive/adherend pair. This relation-
ship can be established numerically by solving the elasticity problem represented in Fig.
2(b). The analytical method used to solve the problem is that of integral equations. The
crack is modeled with an unknown distribution of dislocations. Analytical expressions are
developed for the stress an displacement fields due to a single dislocation in a layered
material system. The combined effect of the entire distribution of dislocations is expressed
through a system of integral equations. The zero-traction condition on the crack face, and
the Kj°, Kjj values in the far field, are imposed. To obtain numerical solutions, the
distribution of dislocations is represented in a truncated Chebyshev series of order N, and
the system of integral equations is evaluated at the same number, N, of collocation points.
Solution of the resulting linear algebraic system yields the unknown Chebyshev coefficients,
and reassembly of the series expansion recovers the distribution of dislocations. Using the
distribution of dislocations, the local stress and displacement fields, stress-intensity factors,
and T-stress can be calculated. A schematic of the solution process is presented in Fig. 4.

PRELIMINARY ELASTICITY RESULTS

The problem of a crack in an adhesive layer is best described using two-dimensional
plane-strain elasticity in stress function formulation. For convenience, both the Airy stress
function and Muskhelisvili’s complex potentials are used. The bi-material interface con-
ditions play a crucial role and are discussed separately.

Airy stress function formulation for plane elasticity problems

The Airy stress function formulation is developed in terms of Airy function, U(x, y),
and the companion function, X(x, y). The functions U and X satisfy the differential equa-
tions

VU=0 and VX =0, &)

and are connected by the differential equation:
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;iaXy = %VZ U. 6)
The stresses are given by
o*U 0* o*U
Uxxza;z_’ 0, = *E 0, = ~ %oy’ )]
and the displacements are given by
2pu=—%;+(x+l)%§, 2yu=—%}—({+(}c+l)g—i{. ®)

The displacement gradient with respect to x is given by

ou 1 U xk+1 8*°X oo 1 U  «k+18*X

R TY X R T e A A VY TR T ®

The material constant, , has the expression ¥ = 3—4v in the plane-strain problems, and
x = (3—v)/(1+v) in plane-stress problems.

Muskhelisvili’s complex potentials formulation for plane elasticity problems
Using the complex variable z = x+ iy, Muskhelisvili’s (1963) writes:

0uxt0,, =2[0()+3(2) (10)
O,y — Oy + 2i0,, = 2[207(2) + ¥ (2)] (1
2u(u+iv) = ke(z) —2p(2) — Y (2) (12)

where ®(z) = ¢'(z), ¥(z) = ¥'(2). Adding eqns (10) and (11), and taking the complex
conjugate of the results yields

6,,~io,, = [O(z)+ D) +20'(2) + P(2)]. (13)
It is convenient to introduce the auxiliary function
Q(z) = —B(z) —20(2) - ¥(2), (14a)
and its conjugate
¥(z) = —Q(z) — D(z) — z@'(2). (14b)
Using eqns (14a) and (14b) in eqn (13) yields the complex stress expression
0,,— i, = [0(z) —Q2) + (z—2)P'(2)]. (15)
Similarly, one gets the displacements expression

2uu+iv) = kp(z) +w(Z) —(z—2)®(2) +const, where w(z) = [Q(z). (16)
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Fig. 5. The bi-material interface conditions.

In the boundary matching problems, the displacements are more conveniently expressed
in differential form, thus avoiding the integration constants associated with rigid-body
motions. Differentiating eqn (16) with respect to x, and dividing by 2u yields the expression
of the displacement gradient :

ou v K | )
(5;4—15;):=EE(D(L)+§;[(Z——2)(D(2)~(D(2)]. (7

Muskhelisvili’s complex potentials formulation can be related to the Airy stress function
formulation. Thus, the functions ¢(z) and ¥(z) can be used to calculate the Airy function
{Muskhelisvili, 1963) :

U(x,y) = Relz¢(z)+ [(z) dz]. (18)

The bi-material interface conditions
Consider a bi-material interface between material 1 and material 2. Traction equi-
librium and displacement compatibility must be satisfied.

Traction equilibrium conditions. The traction equilibrium conditions can be expressed
as:

(px)malcriall + (px)materialz — 0’
(p}’)malerian + (py)malerialz — 0 (19)

where p, and p, are the tractions in the x and y directions, respectively.
For a general curvilinear interface, the tractions p, and p, are defined using the
components 7, and n, of the external normal, %, and hence

(0 it + 01, )T 4 (0 1+ 0 1, )T = 0,
(O‘ oy + G—y},ny)materiall + ( iy + o, ny)materialz = 0. (20)

In our case (Fig. 5), n, =0, n, = —1, for material 1, and n, = 0, n, = 1, for material 2.
Hence eqn (20) becomes
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Displacement compatibility conditions.

(u)maxcriall — (u)materiaIZ
2
(U)maleriall — (U)maleriaIZ‘ (22)

To avoid the effects of rigid body rotations, displacement continuity can be conveniently
expressed in terms of the displacement gradient along the interface using eqn (17).

Displacement gradient jump in terms of Muskhelisvili’s complex potentials. 1If one
attempts to use the same stress function or Muskhelisvili’s complex potentials across a bi-
material interface, a certain displacement discontinuity will result. For example, one can
use eqn (17) to evaluate the displacement gradient above and below the bi-material interface
by using the same complex potential ®(z), and changing only the material constants y and
k. Upon subtraction, one gets the displacement gradient jump

A— @ dislocation au 9}1 material 1 % ?B material 2
ox VA% ax ox Tax
0, [ K K3 1 — .
= ——|5——5-|0@)+ w [(Z )P (2) - D(2)]. (23)
2 1

Multiplying both sides of eqn (23) by 2u,/(x,+ 1) yields a non-dimensional expression of
the displacement gradient jump in terms of Dundurs’ parameters, i.e.,

) 5 a (? dislocation o
a <A5—Z a—”) = (“"‘"ﬂ)cb()—(—f)[(z‘~z)d>’(z)—d>(f)]. (24)

K2+1 1+a

EDGE DISLOCATION IN A LAYERED MATERIAL SYSTEM

Consider the problem of an edge dislocation in a layered material system (Fig. 6). The
dislocation of strength b, + ib, is placed inside the middle layer (material 2), at distance d



Analysis of adhesive layer crack 1107

from the upper interface, and distance ¢ from the lower interface. The origin 0 of the x—y
system of axes is taken at the dislocation. We tackle this problem through the superposition
of two simpler problems :

e Problem 1: Determine the stress and displacement fields due to an edge dislocation
placed at the origin of an infinite homogenous elastic plane.

e Problem 2: Determine the correction stress and displacement fields needed to com-
pensate for displacement discontinuities at the bi-material interfaces.

Problem 1 develops the complex potential for calculating the stress and displacement fields
due to a dislocation placed in a homogeneous plane, e.g. the middle layer. If we use the
same complex potential in the outer layers, displacement discontinuities will be registered
at the bi-material interfaces. To compensate for these displacement discontinuities, one
uses the corrections generated by Problem 2. Thus, the stress and displacement fields for
the complete problem result from the linear superposition of the stress and displacement
fields of Problem 1 and Problem 2.

Problem 1: edge dislocation in a homogenous infinite plane

An edge dislocation in a homogenous infinite plane introduces a non-uniformity of
displacements defined by Burger’s vectors b, and 4,. It can be shown (Suo, 1990 ; lonita et
al., 1996) that Muskhelisvili’s complex potentials for an edge dislocation of complex
Burger’s vector b, + ib, placed at the origin of the complex plane are:

ﬂ(bv —ibx) l _ A

®@) = nk+1) z z’

25)

ak+1) z  z (26)

Q) = -~
where 4 = u(b,—ib,)/n(x+1). Using eqns (25) and (26) in eqn (14b) yields the expression
for ¥(2)

_nb,riby 1A

Y@ = ak+1) z  z°

@7

Integrating eqns (25) and (27) yields ¢(z) = AlInz, and y(z) = Alnz. Using eqn (18) yields

2u
(k+D)n

Ux,y) = (b,x—by)Inr, r= x>+ (28)

Substituting eqn (28) into eqn (7) yields the stress expressions
v | y  2x*y x  2xy?
= —2b (= +2b,(— — ,
(k+Dn| —F <r2 - rt > ¢ <r2 r
e y  2x*y x  2xy?
= - =+ —=|+25, | = ,
Gy et Dm Lbe < > + w )+ y (rz + o

i r 2xp? 2x%y
Ko, (iz - —’1)+ 2, (— S —4—})] 29)
r

7= (k¥ D L r r r

UXX

Displacements discontinuity induced by the dislocation field at the material interface
For a dislocation placed in the middle layer, the complex potentials expressions given
by eqns (25) and (26) are defined using the properties of material 2. As we attempt to use
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the same complex potentials outside the middle layer, i.e. in material 1 regions, a finite
displacement discontinuity will be registered at the bi-material interface. Using eqn (25)
into eqn (24) yields the displacement gradient jump at the bi-material interface, due to a
dislocation of strength b, + ib, placed in the material 2 layer:

24, ou Qp\dislocation x+pf\A  [o—p A 4
e N N S £ iy 2
x2+1( ax ! ax> (l+zx>z <1+a><2’y72 z)’ (30)

where 4 = u,(b, —ib,)/n(x,+1). The real part of eqn (30) yields the u-component of the
displacement gradient jump, i.e.:

8u dislocation 611 dislocation a distocation
(A 5;) = b, (A 5;> +b, (A 5)‘-:) , 31)

b b,

x

where (A(Gu/0x))§"**"" and (A(du/éx));™***" are influence coefficients due to Burger’s
vectors b, and b, respectively, i.e.,

au dislocation B 1 y y3

(Aa)bx = 2(1+a) |:(2cx—ﬁ)r_2 —2(—f) ’7:|’ (32)
au dislocation 1 N xy2

<Aa>by N a(l +a) [—ﬂr—z +2(°‘—/3)—r4-]. (33)

Similarly, the imaginary part of eqn (30) yields the »-components of the displacement
gradient jump, i.c.,

61) dislocation 60 dislocation av dislocation
where
v dislocation 1 x xy2
e L et 65)
av dislocation 1 ¥y y3
(A5§> i+ [’3 R 7} ©o

Problem 2 : correction stress fields

Problem 2 cancels the displacement gradient jump induced by Problem 1. To this
effect, consider the problem of a three-layer two-material system having stress-free infinite
boundaries and prescribed displacement gradient jumps at the bi-material interfaces, equal
in magnitude and of opposite signs to those given by eqns (31)—(36). Problem 2 will be
treated with the Airy stress function formulation as given by eqns (3)—(8). By matching the
free-boundary conditions in the far field and by satisfying the traction equilibrium and
displacement gradient jump at the interface, we are going to determine the Airy stress
function, U(x, y), and its companion function, X(x, y). The Fourier transform with respect
to the variable x is used. To keep the formulation manageable, the effects of b, and &, are
considered separately, and the effect of the odd and even behavior in the variable x of the
displacement gradients, du/dx and dv/0x, and of the functions, U(x, y} and X(x, y), is used.
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Correction stress field for b,

Assume b, = |, and b, = 0. According to eqns (32) and (35), the displacement gradient
(Quf0x),, is even in the variable x, while (9v/0x),_is odd. Examination of eqns (7) and (9)
yields that U(x,y) must be even in x, while X(x,y) must be odd. Hence, we use the
appropriate Fourier sine and cosine transforms, i.e.

o0

FU(x.y)) = Ot y) = %j U, ) cos ix dx

0

20

F(X(x,y) = X(4,y) = %J' X(x,y)sin Ax dx.

0

Applying the Fourier transform to eqn (5), yields

U 0
st oT =

F (V) = 2 U-24° =
9 éy oyt

The roots of the characteristic equation are given by

ri2 = —A

k]

=D+ =0= {

r3,4 =l

and the general solution is

7 — 4 A —4ay _{li 14_4 Ay (
Ud,y) = (/12 + 1 y)e +<Az + 1 y)e , 37)

where the coefficients A4, ..., 4, may be functions of 1. Applying the inverse cosine trans-
form yields the physical-domain expression

“ /4, A A, A N
Ulx,y) = L [(/Tzl + —fy)e“”%— (/1—23- + -fy) e"}jlcos AxdA. (38)

Substituting eqn (37) into the Fourier transform of eqn (6) yields
7 1 —Ay Ay
X(4, ) =£;(A2e Y4 Ay eM). 39
Integrating with respect to y, and performing the inverse Fourier transform yields:
1 a i .
X(x,y) = ZE(AZ e "+ A, e”)sin AxdA. (40)
0

Substitution of eqns (37) and (40) into the Fourier transform of eqn (7) yields the expression
of stresses in the Fourier domain:

~ o 277 ~ G 3 ou
Gy)' = '/c(ay) =—A U’ Oy = */s(axy) = A

dy

i.e.,
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G, =(—A,—AyAy)e W+ (—As— A, Ay) ¥ 1)

G = [—di+(1-Ap)ds]e ¥ +[A4;(1+2y) 4] €. (42)

Substitution of eqns (37) and (40) into the Fourier transform of eqn (9) yields the expression
of displacement gradients in the Fourier domain :

774
— A
Ox ’

oif ouy 1 2~+K+148_f
T T 2u 2u " 3y

K+1
2u

1 . b,
= '2; [(4,+A4Ap) e + (4, +A44y) ely] + E( >(“A2 e_iy+A4 ely), (43)

op dv 1 .00 wk+1_
— = F — = A — 2
Ox /’(6)6) 2u” oy 2,uiX
1 N
=ﬂ{[——Al+(1——2y)A2]e—)~}'+[A3+(1+/1y)A4)]eAy}
b, [k+1 ;
*5< 2% )(Aze—*”r/u e”). 44
Upon simplification
a1 k+1 , k+1 .
26—£=;<A1+A2)~y—~2—1‘12)€A)'+<A3+A4Ay+TA4>eM-’ (43)
or 1 K+1 . k+1 »
zazp(Az-J,—Al——Az/ly— 3 A2>€"'”+<A3+A4+A4}L,V—“2_144)9”' (46)

Expressions for the functions U and X in each layer. It can be seen that 4 coefficients,
A\, A5, A;, and A,, determine fully the potentials U(x, y) and X(x, y) in a material region.
In our three-region model, a total of 12 coefficients need to be determined from the
boundary conditions applicable to each region. We designate these A, coefficients as C; in
layer 1, D, in layer 2, and E; in layer 3. The outer regions (layers 1 and 3, made of
material 1) are semi-infinite, and their far-field boundary is free of stresses and displacement
gradients.

Hence, the functions U and X must vanish at y — + co together with all their deriva-
tives. This implies that C; = C, =0 in layer 1, and E, = E, = 0, in layer 3. Thus, the
following functions are used:

Inlayer 1 (d < y):

2 Ay

FE

- C
-+ _y>e‘*y, X(4,y) = bxz

]

Ulx,y) = b, Gy —2yle?cosixdi, X(x,y)=b,| ——e Vsinixdi (47)
] A:Z )“ 0 2}-2
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In layer 2 (—c <y < d):

~ _ D] D2 .y D3 D4 iy ~ 1 —Ay .
U(A,})—bx[(ﬁﬁ-—[y)e y+<—-+—[y ev |, X(/l,y)=bx5;(Dz€ Y+ D, e™)

AZ
) =1 /D D D D
Ulx, y) = bxf [(171 + —fy)e“’# (723 + —fy) e"y]cos}tx di,
¢
® 1
X(x,y) = b, J E(D2 e P4+ D, e”)sin Axdi. (48)
1]

Inlayer 3 (y < —o¢):

= _Ej ﬂ — Ay ’“ — Eq Ay
U(/lay)—bx(lz + /{y)e s X(l’y)—bYZAze

© (F E . ° FEy
Ulx,y) = bxj (I;* + *fy) YeosixdAd, X(x,y) = bx‘[ E%e” sinAxdd.  (49)

0 o A

Note that the 8 unknown constants, C,, C,, D,, D,, D, D,, E;, E, must be determined from
the bi-material interface conditions.

Bi-material interface conditions in the Fourier domain. The traction equilibrium and
displacement compatibility conditions expressed by eqns (21) and (22) are transformed
into the Fourier domain. Thus, eqn (21) becomes

(&ny)materiall — (O.-xy)materialZ’

(Oq}yy)material 1 — (o:yy)material 2 , (50)

where the tilde symbol designates the Fourier transform. The displacement gradient jump
due to the correction field must be equal and of opposite sign with the displacement gradient
jump due to the dislocation field. Hence

011 aﬁ dislocation
(3= -5

@ﬁ aﬁ- dislocation
()62

where the superscript dislocation refers to the expressions given in eqns (32) and (35) for
b, =1, and b, = 0. By applying eqns (50) and (51) in turn at y = d and y = —c interfaces,
we obtain the 8 equations necessary for the determination of the unknown constants C,,
C,, D\, Dy, D3, Dy, Es, E,.

Interface Conditions at y = d. At interface y = d, the upper layer.corresponds to
material 1 and the lower layer to material 2. Substituting eqns (41) and (42) into eqn (50),
and using coefficients C,, C, above the interface and D,, D,, D;, D,, below the interface,
yields

(C,—C, +dC,)e ™+ (—D,+D,—AdDy)e ™ +(D;+ D, +AdD,) e =0  (52)
(Cy+AdCy) e ™+ (=D, — 2dD,) e ™ +(— D4 —idD,) e = 0. (53)

Similarly, substituting eqns (45) and (46) into eqn (51) yields



1112

K, +1

—'—C2>e

1
- (Cl +/‘1‘,ch - M L
1

3 (Dl +4idD, —

Ha2

1
- — <D3 +2dD, +
H2

C2>€¥Ad

K, +1
2

1
<C2 - Cl _’.A,dCZ -
H

1
——{D,—D,

Ha

K2+1

K,+1

iy +1

V. Giurgiutiu et al.

)e—id

611 dislocation
-2 <A—a;) . (54)
bY

>e~ld

Ky + 1

(35)

a ~ distocation
(1)3 4D, +2dD, + >eM =2 (Aé(z,d)) .
b

x

2

Dividing eqn (52) by y, and adding to eqn (55) gives

1 1
et — (/T — —>(l +Aid)D, e*

2 M
5 (A
Using the non-dimensional parameters «, f and Z of eqns (3) and (4) yields
a—p | (=B, z aa_ (2B d
(1—a)Dle +[ (1—a>(1 M)+ | P\ T, ) Pee
o

o — ﬁ ) ] dislocation
+[—<1_a)(1+zd>+ﬂ (Aau,d))bx .

Similarly, dividing eqn (53) by u, and subtracting from eqn (54) yields

Cye M — (-1~

dislocation

ov
Ox

. 2u,
K,'2+1

(i,d))

b

x

2p,

1
D, —-Cre ™™= _%
Ky+1

2

(56)

1 1 | . 1
- —)Dl et~ (— - —) sdDy e 4 2T
H Ky Iy 2

2u,
Ky +1

K, +1
2p

Dz e—/ld
Ha

H2

1 1 . 1 1 )
- <'— - —) D; e — (— — v) AdD, e+ £
J LT Ky 2p
Using again the non-dimensional parameters «, f and Z yields
— ) > o«—
(=)o (s o (i)

o l—a
O(—ﬁ i > or dislocation
NECE (o)

b
The expressions for (A(3/0x))g=>2"" and (A(35/0x))5'>*** are computed by taking the
Fourier transform of eqns (32) and (35) and hence:

dislocation

on
)

D4e’;"l: _
2

x

1

D4 eid’_ §C2 e’ld == —Z

2p,
K>+ 1

(57)

~
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oi dislocation 1 a(l _ lld) _+_ﬁ/'[ iy ‘
(e =) Y
or dislocation 1 ﬁ(l _ ld) + oz/'Ld)
A— _ = -7/ T —Ad. 4
( <o, d))bx - ( o )e (59)
Interface Conditions at y = —c. At interface y = —c, the upper layer corresponds to

material 2 and the lower layer to material 1. Substituting eqns (41) and (42) into eqn (50),
and using coefficients D,, D,, D;, D, above the interface and E,, E, below the interface
yields:

(=D, +Dyic) € +(— D3+ Djic) e *]—(—Es+Eic)e ™™ =0 (60)
[=D,+(1+Ac)D, e +[Dy+(1—Ac)D,) e ™ —[E; + (1 —Ac)Esle ™ =0.  (61)

Substituting eqns (45) and (46) evaluated on both sides of the interface into eqn (51),
yields:

| 1 1 Ky+1
- E3‘—E4A.C+ Kl+ E4>eilc—_(D]—D2)~(:_ 2 D2>elc
e 2 Ha 2

1 1 a ~ dislocation
——(03—D4Ac+ M—D4>e‘k = -2 (A—“(A, —c)) (62
o 2 ox ,,

x

1 1 1 Ky+1
- E3+E4—E42.C+‘K—1LE4>E~AC——(Dz—Dl'i‘Dzic_ 2 Dz)eh‘
Hi 2 U2 2

1 a ~ dislocation
L (133 +D,—D,hc— EZLD4>e"1” ) (A—”(z, —c)> . (63)
7R 2 O0x A

x

Dividing eqn (61) by p, and adding to eqn (63) gives:

1 . 1 1 1
Kot D, e+ ﬁ—D‘a e—lc+<__ _ _) Eye
2/12 2#2 Ky H2
— A 1_,1 1 ; 6~ dislocation
4 1+ c+ c_K1+ >E4eﬂc:_2<Al(L_c)> )
I t 2u 0x b,

Using the non-dimensional coefficients «, f and X of eqns (3) and (4) yields:

o— O‘—B 1 —AC Z c
- (1_§>E3 e*“+[— (1 _a)(l—/lc)— E]E;e + EDZ et

b3 e 2 o aﬁ dislocation
D = —%- =, — . (64
+ZDe= -z (A a9 (64)

Ky+1

Similarly, dividing eqn (61) by p, and subtracting from eqn (62) gives:
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Ko+ 1 Ky+1 1 1
2 D2 e/lc_ 2 D4 efic_‘}_ (____ _ _) E3 ef&c
i Ko M2

1 1 K, + 1 aﬁ dislocation
+| —de(——— |+ —— |Ese ™= —2[A—(4, — :
[ c<#1 #2)+ 2 ] € < é’x(ll’ c))

by

Using the non-dimensional coefficients «, # and T of eqns (3) and (4) vields:

a_ﬁ —Ae a—ﬁ 1 — A Z Ac
(1_a>E3e +|:<1_a>lc+ 2:|E4e +2D2€

E . 2#2 aﬁ dislocation
—ZDye = _% —(, — .
2 72¢ Kot 1 (A o c))bx 63

The expressions of (A(8d/0x))5***" and (A(60/0x))E>*"*" are computed by taking the
Fourier transform of eqns (32) and (35) and hence:

5 dislocation B 1 fa(l—Aic)+pAc\ _,.

(A —6—;(/1, --C))br = — - <‘—m-—’“>e (66)
@ dislocation B 1 ﬁ(l _ ftc) +oic e

(A ax(i, —C)>b1 = ( (ta) )e . (67)

Symbolic solution of the algebraic system of equations in the Fourier domain. Equations
(52), (53), (56), (57), (60), (61), (64), and (65) can be put together in matrix form as

M1 [M] [0 o) {v1}
o) o )] T ) ©9
{c}h
where
F—1 Aic —e e dee ¥ ]
—1 (14+i0) e (1—A)e ¥
l=e*| o % 0 —Zew |, 69)
2 2 —2Ac
] 0 5 0 28 |
T —iC ]
—1 ic—1 1 Ad
1 Ad-1
= iH+0) _“”ﬂ «— l M, = e HH+d
M;]=e - 1—dic+2 , M=e 0 _% >
— 0 1
_a ﬂ _a B(l—ic)——‘ 2
L 1—2 1— |

(70)
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ro—e M —Ade M -1 —d 1
__e—z;\d (1__/1d)e—2/1d 1 (1+id)
_ oA __Oi:ﬁ —2id _ . E —2d _“"‘ﬂ _““}8 __2_
(My]=e = sd+ e Ty 43
2—f a—p N o x— a—p . z
i ¢ (——l_a(/ld 1)-i-2 e e 1= (/vd+1)+5—
(71
r 0 b
0
20,Z o 1 fa(1—Ac)+ faic
= — ¢ - 7
v} i1 - (it L (72)
l p(l—Ac)+alc
LT (14-0) )
e O ~
0
_ 2u,% T l a(l —Ad)+ pA
{v)} = — P - (i) > (73)
l Bl —Ad) + ol
Lm (1+a) |

The system (68) must be solved for the coefficients Dy, .

.., D4 contained in the vector {D}.

The matrices of eqn (68) are of size 4 x 4,4 x 2, 4 x 4, and 4 x 2. This makes the system
coupled and not readily solvable for {D}. Symbolic manipulation of system (68) can yield
a symbolic solution (Graffeo, 1995). The matrices M,, M,, M, and M, were partitioned
into smaller 2-row units, i.c.,

(M1]
Mi21]
(M311]
[M;2)]

[M)2]
[M,,]
[Ms),]
[M3,5]

(M]
[(M3,]

(01 {D1}

[0] {D3.}
(Ma] {E}
[M,) {c

{vi}
{012}
{21}
{v22}

(74)

Formal Gauss elimination was applied using the non-singular pivots M, and M,,. The
vectors {C} and {E} were eliminated, and hence

D,

D,

where

D,
( >={Dlz}=[M?ll—([M?z][MTz]"[M’ﬁ])"([v’z*z]—[M’z“z][MTz]“‘[vTxl), (73)

D,
( >={D34}=[M’1"z]—([MT1][MTz]‘[M’z“z])"([v‘h]—[Mi“l][M%‘l]"[v?z]), (76)
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[MH\] = [M30,] = [My][M ] [M500], [M3] =M 5] = [M)[M;)]7 [M4],

amn

MT,] = [M32,] — (M) [My]7 ' [M;0,],  [ME] = [M5,]— [M5][M, ] [M)5],
(78)
[0F] = [022] = [Ma][Ma] ol vkl = 0121 = [M3,][M0 ] on]- (79)

Evaluation of the coeflicients Dy, ..., D, was done at A-values in the range (0, 4,,..,), where
Amax 18 the upper limit of the truncated Fourier domain.

Correction stress field for b,

In this case b, = 0, and b, = 1, and the equations of the problem are the same as in
the Case b,, except that U is odd with respect to x and X is even with respect to x. Hence,
we apply the Fourier sine transform to U and the Fourier cosine transform to X. Denoting

o0 =¢}

~ 2 ‘
FU)=U= —J XcosAxdx, (80)

o

2
Usin Ax dx, ?C(X)=X=;J

0

and following the same steps as in Case b,, we obtain the following integral representations

=[(B, B . (B, B
U(x,y) = b},J [(ﬁ += y>e”‘y + (—j— +- y> e*y] sin Ax d,
0 A

= 1
X(x,y) = —byf ﬁ[Bze”-wBL, ™) cos Ax dA. 81)
0

The minus sign in the X representation appears when using eqn (6). The coefficients B, are
denoted : F;in layer 1, G;in layer 2 and H,in layer 3. From the far-field conditions it follows
that F; = F, = H, = H, = 0. The interface conditions are introduced in the same manner
as in the Case b,, and finally we get

{G}
M, M, 0 1
(EM } | 0 | (M 1) W) | G: i) 2
3 4 {F} 2
where the matrices [M,]-[M,] are given by eqns (69)—(71) and {w;} have the expressions
( 0 b
0
2u,% 1/—p(+ i) +aoic
{Wl} - Kzu—z*_le—/l(}wc) ;(W) L’
1 /—a(l+4c) +ﬁ/1c>
L™ ( (1+0) )
- 0 N
0
21.% 1/—=B(1+idy+ad
e %( (1+2) d) 8 &
1 a(1+/1d)—ﬂid)
| n( 1+ j

After formal elimination of {H} and {F}, we get
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G,
(G )2 (G2} = IM]—(IME]IME] ' [MAE]D) ™ (wh] - ML1IME] W], (84)

G,
(G >= {Gaa} = IME]-(MEIIMAE] T MED ™ (wh] - [IMEIME] " Wh]), (85)

where the matrices of the right hand side are given in eqns (77)—(79).

Superposition of problem 1 and problem 2

The full stress field in any point of the plane is obtained superposing the effects.
Generally we may write

o= O.Probleml +O.Pr0blem2

— O.dlslocallon+0.correcllon (86)

where g%¥1°2t°n represents the state of stress given in Problem 1 by eqn (29). The correction
stresses 0°°™%°" are calculated in Problem 2 with eqns (75) and (76). For b, = 1, use the
coefficients Dy, ..., D, given by eqns (75) and (76) to get:

(Go)meon = J {[Dy + (iy—2)D;) e + [Ds + (Ay+2)D] ¢} cos Axdi,

0

(0,,)50rmetn = —J (D, +Dyiy)e ™ +(D;+D4iy) e?] cos AxdA,

0

[s.e}

(0,)80ect" = J {[D,+(Ay—1)D,]e ¥ +[D; +(Ay+1)D,] €”} sin Ax dA. 37

0

For b, = 1, use the coefficients G4, . .., G, given by eqns (84) and (85) to get

(05" = J {[Gi+(y—2)G,l e ™ +[Gy + (Ay+2)G,] €7} sin Ax d4,

0

C J [(Gi+G2ay) e ¥ + (G5 +Gly) ¥] sin Axd4,
0

20

(axyﬁ?'”“‘“:J (G, + Gy —1)Gl e +[Gs + (Ay+1)G,] 7} cos AxdA.  (88)

0

Hence, at y = 0, at the crack line, the stress field induced by the dislocation is given by

. [2b,

axx(xa O) = ﬁ_?z) <7 +gx(x)bx +gy(x)by>s (89)
2 bx

6,,(x,0) = Zﬂf_—f) <2x ()b, + fxy(x)by>, (90)
75 2b,

6,,(x,0) = ) (~x~ +£.(x)b, -+—fyy(x)b,,>. ©n
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The correction functions g,(x) and f(x), i, j = 1, 2, used in eqns (89)-(91), are derived from
eqns (87) and (88) by taking y = 0 and dividing by p,/4n(1—v,), i.e.,

g.(x) = ﬁ(t;*”) f " D1 () +2D1G) + Dy () + 2D, (2)] sin Ax d.
4n(l—vy) [ ] ;
g,(x) = ~—~#— f [Gi(AD)+2G,(A)+ G (A +2G, (D] cos Axdx, (92)
or
1) = FE= ) 1,0 4D, + D)+ Du(h] sim i
2 JO
1) =01 16,6200 ~ 6, ()~ Guli o xds,
S = TE= [ 1D ) - D, ] cos i,
fiy(x) = ﬂafv—z) =Gy ()= Ga ()] cos Ax dA. (93)
2 JO

The Fourier transforms contained in eqns (92) and (93) were performed numerically using
an adaptation of the Fast Fourier Transform (FFT) method.

THE INTEGRAL EQUATION AND ITS SOLUTION

Setup of the integral equation

Consider Fig. 2, with the crack in the adhesive layer extending along the negative x-
axis from 0~ to — co. The crack is modeled by an unknown distribution of dislocations to
be determined from the boundary conditions and the load-like far-field quantities, K5°,
K3, and T*. The following matrix notations are used :

bo) Fu) fxy(X)] {px(x, 0)}
b = s f = > = »
() {bym} ) [fmm PN S P

u() = {“(’C)} K = {K} (94)
b(x) ’ K;

where the functions f, (), f,,(x), and £, (x) are given eqn (93). The traction-free condition
on the crack faces (y = 0) is written as

we [ [2b() -
PO = 4t J [x_5+f(x—é)b(f)]dé—0. (95)

-

By definition, the relation between crack face displacements and the distribution of dis-
locations is

u(x) " —u(x)" = f b de = (%(u(xr—u(x)‘) = —b(x)dx. (96)

X

Recall Williams’ (1952) relation:
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. N
u()* —u() = (257;(” ). 97)

Differentiating eqn (97) and substituting in eqn (96) yields

K2+1 K

2p, ,/—an.

Applying eqn (98) in the adhesive (material 2) i.e. very close to the crack tip, we write :

b(x) ~

(98)

k+1 K

b(&) ~ when € -0, 99

2u J—2mé )
whereas in the adherent (material 1) we get:
K, +1 K*

b(&) ~ when & — — 0. 100

( 2, —2né (100)

The integral eqn (95) and the additional condition (100) must be solved to determine the
unknown distribution of dislocations, b(x). Equation (99) can be then used to determine
the near-field stress intensity factors in the adhesive.

The infinite interval (— oo, 0) can be conveniently changed to the finite interval (—1, 1)
through the change of variables

u—1 t—1
x=;+—l, 5=;_—+_~1, u,te(—l,l) (101)

and denoting ¢(f) = b(&(1)), eqn (95) becomes:

! u+1 ! dz
Jll mc(t) de+ _ﬁl F(x(u) —E(1)e(D) D) =0, (102)

while eqns (99) and (100) take the form

2 1+¢ K2+1
c(t) — K forr—1-, 103a
© 2n 1—t<2}‘2> ( )
2 14+ /k +1
c(z K® fort— —1%. 103b
()q‘/2n 1_[(2”1) ( )

Chebyshev series expansion
The solution is sought in terms of a truncated Chebyshev series :

I+t X
c(t) & T_—t'kZOTk(f)aky (104)

where N is the number of terms, T,(¢) are Chebyshev polynomials of the first kind and
order k, i.e.,
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T,() = cos(karccos(r)) and a, = {a""} - {a‘} . (105)
k

a2k a

The 2(N+1) coeflicients, a,, in the Chebyshev series expansion have to be determined
numerically. Taking the limit t > 1~ and t - —1* in eqns (102) and (103), respectively,
yields the direct relation between the near-field and far-field stress intensity factors and
Chebyshev coefficients:

b3 2'”2 o0
K= \E o kgo a, (106)

© 2 /K, +1\1—a
k;( Da ﬁ( 2 )l+ocK : (107)

Substitution of eqn (104) into eqn (101) yields the discretized form of the integral equation:

—‘n(l+u) i Uk_l(u)ak+ i Dk(u)ak = O, (108)
k=1 k=0
where
sin(k arccos u) " -4) T
Uk(u) = —-\/_1t__7— and D (u) = Jl' 1+: —p dt. (109)

Collocation of the discretized integral equation
The discretized integral eqn (108) is transformed into a system of N x N equations by
evaluation at N Gauss—Legendre collocation points:

N N
—a(l+u) ¥ U u)ac+ Y, Dp(u)a, =0 i=0,...,N we(—1,1. (110)
k=1 k=0

Adding eqn (107) yields, in matrix notations,

Doy —m(i+u)Upd+Dy ... —7(14+u)Uy_I+Dgn ap 0
DI,O —TC(1+U1)U(]I+D]J —7‘[(1+u1)UN,1I+D1,N a
D,, —na(l+uy)Upd+D,; ... —n(l+uy)Uy_I+Dyy Ay 0
1 -1 (— D" ay v
(111)

where I is the 2 x 2 identity matrix, v is the ““data”, i.e.,

2 K2+1 1—a
- /= il 112
v \/;<2u2 >1+aK ’ (112)

and D, are the matrix coefficients,
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D. = () —<(0) T d
) 1+1¢ AT

(113)

Evaluation of the singular integrals defining the matrix coefficients Dy,
Evaluation of the matrix coefficients D,, involves certain singular integrals that need
to be treated with special attention. Writing eqn (109) for k41

' (@) =€) T (1)
Dm(u)—f_l e (114)
and using the recurrence relation between Chebyshev polynomials
Ti () =2T,() T (), To=1, T, =1, (115)

yields

Dy () = 2E, () - 2D () =Dy (), k>1, and D,(u) = Eq(w)~Do(n), (116)

where

f(x()—<¢()) 1
1+¢ 1—¢2

dz.

E,(u) = J L ) — (1) le(t)zdt, k>0 and Dy(u) = J 1
1 —1 —1

(117)

Thus, the evaluation of eqn (109) has been reduced to the evaluation of only two integrals,
E.(#) and Dy(u). The integral E.(u) can be computed directly using Gauss—Chebyshev
quadrature

E.(u) ~

=13

Z f(x(u) — E(1)) Te(t;) where t; = cos <2";’; 1), n = 40. (118)

The integral Dy(u) requires further attention, since it has a singular point at t > — 1 due to
the presence of £+ 1 in the denominator. Making the change in variable ¢ = (1 —#)/(1 +#),
we obtain

Dy () = %rw\/){—mdﬂ- (119)

The integral (119) has an integratable singularity at # = 0. Two methods were used in
parallel to compute the integral (119): the Singularity Removal Method and the Finite-
Part Regularization Technique. These methods are described next.
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Singularity removal method
Using the change of variable # — p?, expression (119) becomes

defwﬂnm+pﬂdn=f%ﬁnm+vﬂdn+fmﬂnw+pﬂdn

0 Po

1—
where Po = T—f——‘_ . (120)

LI

Finite-part regularization technique
Integral (119) can be written as

T [ ) )

Denoting

T L® L fe® 0
Fm-&m>(>}”dfm_[0 mm] (122)

the symmetric and antisymmetric part of F(x) integral, one can write eqn (121) as

l—u
14+u

1
Dy(u) = %—;IPf( ) *(F(x)—f(x)), x= (123)

N

where the symbol  signifies the convolution integral, e.g., f*g = [ (&)g(x—¢&) d&, while

1

1
Pf<—~> (124)
\/; \/; x>0

is the Finite Part distribution of 1/,/nx (Zemanian, 1965; lonita, 1993). We use a reg-
ularization of expression (124) through the following Dirac delta distribution sequence
(Kecs and Teodorescu, 1974) :

1
d, (X) = — & , where limeg, =0, and limJ, (x) = é(x) (125)
" xt el noo 0

where 6(x) is Dirac delta distribution. Hence,

0.,
| cos ( 2 )

1 &, 7., .2
@, (x) = - Pf| —= *¥0, (x) = ———, 0, =arctan—, r, =./x*+¢..
g L x>0 " ! X

\/;c nr,, i

The limit ¢, = 0 of eqn (126) yields expression (124), i.e.,

1
li =Pf|——]) .
lim ¢, (x) = Ff ( \/;r;)»o

Using (126) in relation (123) gives the following evaluation of the Dy(x) integral:
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. 1—-
Do) = 5" lim 9,09 *E@~F), x =1

5 (127

After the matrix coefficients D,, are evaluated, the linear algebraic system (111) is solved
through standard numerical routines, and the solution represents the Chebyshev
coefficients, contained in the vector matrix a,, k = 0, ..., N. Substitution of these coefficients
into the series expansion (104) yields the dislocations distribution, and thus the problem is
solved.

EVALUATION OF THE NEAR-FIELD STRESS INTENSITY FACTORS, K; AND K;

The Chebyshev coefficients, contained in the vector matrix a,, k = 0, ..., N can be used
to calculate the near-field stress intensity factors, K; and K, in the adhesive layer. Recall
eqn (106),

A 2‘112 X K[[
= [———) a, whereK= . 128
\/;K2+1k=0 ‘ {K,} (128)

Hence, the near-field stress intensity factors are calculated as

T 2 & n 24,
K,=\/;K2 Ya and Ky= ﬁxz-i—lzakl (129)

EVALUATION OF THE COEFFICIENTS ¢, AND ¢, OF THE T-STRESS

The stress ¢, at any point on the x-axis is calculated with the integral :

0 [2b¢ .
o) =g | [Eaer [ om0 (130)

where the row matrix g(x) = [g.(x) g,(x)] contains the expressions given by eqn (92).
Substituting the Chebyshev series expansion (104) into eqn (130) yields

0unlx(@) = m[—znum h Uk,|<u)a2,k+§oﬂk(u)ak} (131)

where

o) - J g —¢0) Ty 132

T+1 \/1_t

The T-stress in the adhesive layer is estimated by evaluating o, on the crack faces very
close behind crack tip, i.e.,

= lim 0,(x) = hm o (x(u)). (133)

x—+0

Substituting egn (131) into eqn (133) yields
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T= ml“i—vz) [—47‘: k; kay, +§0 Hk(l)ak]- (134)

The evaluation of Hy(1) was done without numerical difficulties using the Gauss—Chebyshev
quadrature :

Hk(l) =

7 o g(—E1)
D M

2j—1
T . .=
P (), cos( o n>. (135)

Linear dependence is assumed between the local T-stress and the far field stress intensity
factors, K7 and K, i.e, T = ¢,K? +¢,Kj. Hence, ¢, and ¢, are calculated by solving the
problem for K; = 1, K;; = 0, and for K, = 0, K;; = 1, respectively.

CONVERGENCE STUDIES AND NUMERICAL RESULTS

Numerical cases were studied to assess the convergence properties of the method and
to obtain numerical values for the ¢; and ¢, coefficients of the local T-stress. In one
study, realistic values of the material parameters were used, and the Aluminum/Epoxy
adherend/adhesive pair was chosen with pu, =263, v, =035, u,=1.5 v, =0.34,
o = 0.8936, f§ = 0.2431. Two other cases were run with round values of the Dundurs
parameters (x = 0.8, f = 0.3, and « = 0.9, § = 0.2) in order to facilitate direct comparison
with the results published by Fleck e al. (1991). In all cases, the crack-positioning parameter
was taken as ¢/H = 0.6. Several convergence studies were performed. In these studies we
solved the problem for an increasing numerical size (N = 10, 20, 30, and 40), and examined
the behavior of the Chebyshev coefficients, of the stress intensity factors error parameter,
and of the ¢, and ¢, coefficients.

Convergence of the Chebyshev coefficients

Figure 7 shows the variation of the a,,, @, Chebyshev series coefficients with & for
N = 20, under two loading conditions, mode I loading (K; =1, K,, = 0), and mode I
loading (K, = 0, K; = 1). Recall that, in a homogeneous material, mode I loading induces
only a,, coefficients, while mode I loading induces only a, ;. In our case of mixed materials,
mode I loading will induce both a,, and a,, coefficients, but the former will be dominant,
while the latter will be much smaller and will serve as corrections. For mode 11, the same
situation occurs, but with the subscripts reversed, i.e., a,, are dominant and a,, are
corrections. The correction Chebyshev series coeflicients can be also viewed as coupling
terms generating mode II stress intensity factors under mode I loading and vice-versa. The
coupling Chebyshev series coefficients were found to be two orders of magnitudes lower
than the dominant Chebyshev series coefficients.

Note that Fig. 7 presents separately the dominant Chebyshev series coefficients and
the correction Chebyshev series coefficients. Though the absolute value of the correction
Chebyshev series coefficients is small compared to the dominant Chebyshev series
coefficients, their contribution is paramount in revealing the differences between the classical
homogeneous case and the bi-material case studied here. Examination of Fig. 7 indicates
that, for this value of N, the dominant coefficient converge rapidly towards zero (Fig. 7(a)),
while the correction coefficients converge much slower (Fig. 7(b)). A better convergence
was notices for N = 40. However, for N = 30, a case of bad convergence (or even non-
convergence) was sighted. Figure 8 presents the Chebyshev series coefficients for mode 1
and N = 30. In Fig. 8(a) we see that the dominant Chebyshev series coefficients converge
very slowly and present a ““beats” phenomenon. In Fig. 8(b) we observe that the correction
Chebyshev series coefficients do not seem to converge at all and maintain large amplitudes
evenatk = N.

Similar patterns of behavior were obtained for the other combinations of « and §
parameters. These numerical experiments indicated that the case N = 30 had numerical
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Fig. 7. Chebyshev series coefficients, a,,, a,,, for N =20 and « = 0.8, 8 =0.3: (a) strong con-
vergence of the dominant Chebyshev series coefficients ; (b) weaker convergence of the correction
Chebyshev series coefficients.

problems and did not converge properly, while the cases N = 20 and N = 40 did not have
numerical problems and convergence satisfactorily.

Convergence of the reconstructed dislocations distribution

The Chebyshev series coefficients can be used to reconstruct the dislocation distribution
using eqn (47). Note that this equation contains a singular part (1 + /)'*(1 — )%, multiplying
the Chebyshev series. In our studies, we concentrated our attention on the Chebyshev series

and used the expression
¥t N a
{ ‘()} =Y Tk(t){ ""}. (136)

X)) «=o a7k

Figure 9 presents plots of eqn (136) for N = 10, 20, 30 and 40 where Fig. 9(a) presents the
dominant part of the dislocations distribution, i.e. ¢§(?) for mode 1 loading and x = 0.8,
B =0.3. Note that the reconstructed curves for N =10, 20 and 30 are almost indis-
tinguishable, while the curve for N = 30 is widely off and with slope discontinuities in some
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Fig. 8. Poor convergence of the Chebyshev series coefficients, a,,, a,,, for N = 30 and mode I
loading (¢ = 0.8, f = 0.3) : (a) beats phenomenon in the dominant Chebyshev series coefficients;
(b) no-convergence of the correction Chebyshev series coefficients.

places. Similar behavior is observed in the correction part of the dislocations distribution
for mode 1 loading, c}(¢), as shown in Fig. 9(b). These observations were also noted for the
other a—f pairs. Hence, it was decided not to discuss the case N = 30 any longer.

Convergence of the stress intensity factors

An important result of our calculations is the finding of the local stress intensity factors
K, and Kj; at the tip of the adhesive-layer crack. The local stress intensity factors are
calculated from the Chebyshev series coefficients via eqn (129). The computed local stress
intensity factors can be used to check the consistency of the solution. Using the principle
of the conservation of the J-integral, the following error formula can be derived :

Ki+K:
error = |1 — it R x 100%. (137)

-« o
1_+~GC [(KI )2 + (K11)2]

The error estimated with formula (137) is plotted in Fig. 10 for N = 10, 20, and 40. Note
that, for N = 20, the error becomes small (about 10% for K, and about 12% for K}
loading). Comparison of the results obtained with the Singularity Removal Method and
the Finite-Part Regularization Technique indicates that both methods give, on average,
about the same error.
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Fig. 9. Convergence of the reconstructed dislocations distribution for mode 1 loading and N = 10,
20, 30, and 40 (2 = 0.8, = 0.3): (a) the dominant part of the dislocations distributions; (b) the
correction part of the dislocations distribution.

Convergence of the ¢, and cy; coefficients for the calculation of T-stress

A convergence study for the ¢; and ¢, coefficients and comparison with the results of
Fleck et al. (1991) is given in Fig. 11 fora = 0.9, § = 0.2, and ¢/H = 0.6. Good convergence
behavior was observed. The discrepancy between our resuits and those of Fleck ef al. (1991)
is relatively small, and may be attributed to the computational details of the numerical
methods used.

CONCLUSIONS

The theoretical developments and the solution algorithm used by Fleck et al. (1991)
for finding the local stress intensity factors, K, and K, and T-stress coefficients, ¢; and ¢,
at the tip of an adhesive layer crack has been studied. The symbolic derivation of the
integral equations was reconstructed. To increase the accessibility of new readers to this
work, details of the derivations were introduced in several places, as well as some notation

modifications.
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Fig. 10. Percentage error in the evaluation of the local stress intensity factors for o« = 0.8936,
B =0.2431 and N = 10, 20, and 40.

The numerical part of the solution algorithm was studied extensively. Certain accel-
eration techniques were used to speed up the computation and increase accuracy, as
described in the text. The symbolic solution of the algebraic system in the Fourier domain
was used. Particular attention had to be given to the evaluation of the singular integrals
determining the coefficients of the linear algebraic system, and special recurrence techniques
were used together with the Singularity Removal Method using a change of variables, and
the Finite-Part Regularization Technique. Thus, the numerical convergence difficulties at
u = —1 reported by Giurgiutiu et al. (1995) have been successfully overcome. Implemen-
tation on a Pentium PC with relatively short computation time was achieved. The con-
vergence of the results with the problem size, N, was examined and was found to be
adequate for N = 40.

Though the outline of the problem is straightforward, its solution presented some
difficulties. Difficulties noted with this method of solution include: convergence of the
Chebyshev coefficients and evaluation of certain singular equations. Hence, the use of this
solution method requires familiarity with the computational aspects specific to this class of
problems.
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